Oval lines of the hyperbolic plane of positive curvature
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classification of real nondegenerate second-order lines of the hyperbolic plane $\hat H$ of positive curvature is obtained. It is proved that the basic geometric covariants and the property of line to be convex (nonconvex) determine seven types of intrinsic oval lines and eight types of nonintrinsic oval line on $\hat H$. For every intrinsic oval lines the associate projective frame is constructed and the canonical equation is received.
@article{ISU_2012_12_3_a5,
     author = {L. N. Romakina},
     title = {Oval lines of the hyperbolic plane of positive curvature},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a5/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Oval lines of the hyperbolic plane of positive curvature
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 37
EP  - 44
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a5/
LA  - ru
ID  - ISU_2012_12_3_a5
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Oval lines of the hyperbolic plane of positive curvature
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 37-44
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a5/
%G ru
%F ISU_2012_12_3_a5
L. N. Romakina. Oval lines of the hyperbolic plane of positive curvature. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 37-44. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a5/

[1] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1955 | MR

[2] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969 | MR

[3] Romakina L. N., “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny”, Mat. sb., 203:9 (2012), 83–116 | DOI | Zbl

[4] Romakina L. N., “Analog mozaiki na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matematika. Mekhanika: sb. nauch. tr., Izd-vo Sarat. un-ta, Saratov, 2010, 69–72

[5] Romakina L. N., “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26

[6] Pronko G. P., “Problema Keplera v prostranstve postoyannoi krivizny”, TMF, 155:2 (2008), 317–326 | DOI | MR | Zbl

[7] Liebmann H., Nichteuklidische Geometrie, Leipzig, 1912

[8] Klein F., Neevklidova geometriya, ONTI NKTP SSSR, M.–L., 1936

[9] Kagan V. F., Osnovaniya geometrii, v 2 ch., Ch. II, GTTI, M., 1956

[10] Pevzner S. L., “Fokalno-direktorialnye svoistva krivykh 2-go poryadka na ploskosti Lobachevskogo”, Izv. vuzov. Matematika, 1960, no. 6, 184–194 | MR | Zbl

[11] Pevzner S. L., “Svoistva krivykh 2-go poryadka na ploskosti Lobachevskogo, dvoistvennye fokalno-direktorialnym”, Izv. vuzov. Matematika, 1961, no. 5, 39–50 | MR | Zbl

[12] Pevzner S. L., “Detalnaya klassifikatsiya neraspadayuschikhsya krivykh 2-go poryadka na ploskosti Lobachevskogo s pomoschyu fokalno-direktorialnykh invariantov”, Izv. vuzov. Matematika, 1962, no. 6, 85–90 | MR | Zbl