Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the Dirac system with the continuous potential. Asymptotic formulas for the eigenvalues (including refined) and eigenfunctions are established. As an application we obtain a theorem P. Dzhakova and B. S. Mityagin on the Riesz bases with brackets.
@article{ISU_2012_12_3_a3,
     author = {M. Sh. Burlutskaya and V. P. Kurdyumov and A. P. Khromov},
     title = {Refined asymptotic formulas for eigenvalues and eigenfunctions of the {Dirac} system with nondifferentiable potential},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {22--30},
     year = {2012},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a3/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - V. P. Kurdyumov
AU  - A. P. Khromov
TI  - Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 22
EP  - 30
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a3/
LA  - ru
ID  - ISU_2012_12_3_a3
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A V. P. Kurdyumov
%A A. P. Khromov
%T Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 22-30
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a3/
%G ru
%F ISU_2012_12_3_a3
M. Sh. Burlutskaya; V. P. Kurdyumov; A. P. Khromov. Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a3/

[1] Dzhakov P. V., Mityagin B. S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4 (2006), 77–182 | DOI | MR | Zbl

[2] Djakov P., Mityagin B., “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[3] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matematicheskaya, 75:3 (2011), 3–28 | DOI | MR | Zbl

[4] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 340 pp. | MR

[5] Burlutskaya M. Sh., “Ob asimptotike resheniya odnogo differentsialnogo uravneniya pervogo poryadka s nepreryvnym potentsialom”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezh. vesennei mat. shk. “Pontryaginskie chteniya KhKhI”, Izdat.-poligraf. tsentr Voronezh gos. un-ta, Voronezh, 2010, 3–9

[6] Khromov A. P., “Ob asimptotike reshenii uravneniya Diraka”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Voronezh. zimnei mat. shk., Izd.-poligraf. tsentr Voronezh gos. un-ta, Voronezh, 2011, 346–347

[7] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Mat. sb., 114(156):3 (1981), 378–405 | MR | Zbl

[8] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 445 pp.