@article{ISU_2012_12_3_a14,
author = {A. Yu. Blinkova and A. D. Kovalev and I. A. Kovaleva and L. I. Mogilevich},
title = {Mathematical and {\cyrs}omputer modeling of nonlinear waves dynamics in a~coaxial physically nonlinear shells with viscous incompressible fluid between them},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {96--104},
year = {2012},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a14/}
}
TY - JOUR AU - A. Yu. Blinkova AU - A. D. Kovalev AU - I. A. Kovaleva AU - L. I. Mogilevich TI - Mathematical and сomputer modeling of nonlinear waves dynamics in a coaxial physically nonlinear shells with viscous incompressible fluid between them JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 96 EP - 104 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a14/ LA - ru ID - ISU_2012_12_3_a14 ER -
%0 Journal Article %A A. Yu. Blinkova %A A. D. Kovalev %A I. A. Kovaleva %A L. I. Mogilevich %T Mathematical and сomputer modeling of nonlinear waves dynamics in a coaxial physically nonlinear shells with viscous incompressible fluid between them %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 96-104 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a14/ %G ru %F ISU_2012_12_3_a14
A. Yu. Blinkova; A. D. Kovalev; I. A. Kovaleva; L. I. Mogilevich. Mathematical and сomputer modeling of nonlinear waves dynamics in a coaxial physically nonlinear shells with viscous incompressible fluid between them. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 96-104. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a14/
[1] B. Buchberger, F. Winkler (eds.), Gröbner Bases and Applications, London Mathematical Society Lectures Notes. Ser., 251, Cambridge University Press, 1998, 522 pp. | MR
[2] Gerdt V. P., Blinkov Yu. A., Mozzhilkin V. V., “Gröbner bases and generation of difference schemes for partial differential equations”, Symmetry, Integrability and Geometry: Methods and Applications, 2 (2006), 051, 26 pp. ; (дата обращения 28.02.10) URL: http://www.emis.de/journals/SIGMA/2006/Paper051/index.html | MR | Zbl
[3] Zemlyanukhin A. I., Mogilevich L. I., “Nelineinye volny deformatsii v tsilindricheskikh obolochkakh”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 3:1 (1995), 52–58
[4] Zemlyanukhin A. I., Mogilevich L. I., Nelineinye volny v tsilindricheskikh obolochkakh: solitony, simmetrii, evolyutsiya, Sarat. gos. tekhn. un-t, Saratov, 1999, 132 pp.
[5] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.
[6] Kauzerer K., Nelineinaya mekhanika, Izd-vo inostr. lit., M., 1961, 240 pp. | MR
[7] Volmir A. S., Obolochki v potoke zhidkosti i gaza: zadachi gidrouprugosti, Nauka, M., 1979, 320 pp.
[8] Maxima, a Computer Algebra System, URL: , (data obrascheniya 28.02.10) http://maxima.sourceforge.net/
[9] Blinkov Yu. A., Gerdt V. P., “Spetsializirovannaya sistema kompyuternoi algebry GINV”, Programmirovanie, 34:2 (2008), 67–80 | MR | Zbl
[10] Blinkov Yu. A., Mozzhilkin V. V., “Generatsiya raznostnykh skhem dlya uravneniya Byurgersa postroeniem bazisov Grëbnera”, Programmirovanie, 32:2 (2006), 71–74 | MR | Zbl
[11] SciPy.org, URL: , (data obrascheniya 28.02.10) http://www.scipy.org