About a~problem of spacecraft's orbit optimal reorientation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 87-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal reorientation of the spacecraft's orbit is solved with the help of the Pontryagin maximum principle and quaternion equations. Control (thrust vector, orthogonal to the orbital plane) is limited in magnitude. Functional, which determines a quality of control process is weighted sum of time and module (or square) of control. We have formulated a differential boundary problems of reorientation of spacecraft's orbit. We have obtained optimal control laws, built the transversality conditions, not containing Lagrange multipliers. Examples of numerical solution of the problem are given.
@article{ISU_2012_12_3_a13,
     author = {I. A. Pankratov and Ya. G. Sapunkov and Yu. N. Chelnokov},
     title = {About a~problem of spacecraft's orbit optimal reorientation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/}
}
TY  - JOUR
AU  - I. A. Pankratov
AU  - Ya. G. Sapunkov
AU  - Yu. N. Chelnokov
TI  - About a~problem of spacecraft's orbit optimal reorientation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 87
EP  - 95
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/
LA  - ru
ID  - ISU_2012_12_3_a13
ER  - 
%0 Journal Article
%A I. A. Pankratov
%A Ya. G. Sapunkov
%A Yu. N. Chelnokov
%T About a~problem of spacecraft's orbit optimal reorientation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 87-95
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/
%G ru
%F ISU_2012_12_3_a13
I. A. Pankratov; Ya. G. Sapunkov; Yu. N. Chelnokov. About a~problem of spacecraft's orbit optimal reorientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 87-95. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/