About a~problem of spacecraft's orbit optimal reorientation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal reorientation of the spacecraft's orbit is solved with the help of the Pontryagin maximum principle and quaternion equations. Control (thrust vector, orthogonal to the orbital plane) is limited in magnitude. Functional, which determines a quality of control process is weighted sum of time and module (or square) of control. We have formulated a differential boundary problems of reorientation of spacecraft's orbit. We have obtained optimal control laws, built the transversality conditions, not containing Lagrange multipliers. Examples of numerical solution of the problem are given.
@article{ISU_2012_12_3_a13,
     author = {I. A. Pankratov and Ya. G. Sapunkov and Yu. N. Chelnokov},
     title = {About a~problem of spacecraft's orbit optimal reorientation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/}
}
TY  - JOUR
AU  - I. A. Pankratov
AU  - Ya. G. Sapunkov
AU  - Yu. N. Chelnokov
TI  - About a~problem of spacecraft's orbit optimal reorientation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 87
EP  - 95
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/
LA  - ru
ID  - ISU_2012_12_3_a13
ER  - 
%0 Journal Article
%A I. A. Pankratov
%A Ya. G. Sapunkov
%A Yu. N. Chelnokov
%T About a~problem of spacecraft's orbit optimal reorientation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 87-95
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/
%G ru
%F ISU_2012_12_3_a13
I. A. Pankratov; Ya. G. Sapunkov; Yu. N. Chelnokov. About a~problem of spacecraft's orbit optimal reorientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 87-95. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a13/

[1] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike, Nauka, M., 1976, 864 pp.

[2] Duboshin G. N., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1968, 799 pp. | Zbl

[3] Chelnokov Yu. N., “Primenenie kvaternionov v teorii orbitalnogo dvizheniya sputnika. I”, Kosmicheskie issledovaniya, 30:6 (1992), 759–770 ; “II”, Космические исследования, 31:3 (1993), 3–15

[4] Chelnokov Yu. N., “Primenenie kvaternionov v zadachakh optimalnogo upravleniya dvizheniem tsentra mass kosmicheskogo apparata v nyutonovskom gravitatsionnom pole. I”, Kosmicheskie issledovaniya, 39:5 (2001), 502–517; “II”, Космические исследования, 41:1 (2003), 92–107; “III”, Космические исследования, 41:5 (2003), 488–505

[5] Chelnokov Yu. N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya, Fizmatlit, M., 2006, 512 pp.

[6] Deprit A., “Ideal frames for perturbed keplerian motions”, Celestial Mechanics, 13:2 (1976), 253–262 | DOI | MR

[7] Brumberg V. A., Analiticheskie algoritmy nebesnoi mekhaniki, Nauka, M., 1980, 208 pp. | MR | Zbl

[8] Nenakhov S. V., Chelnokov Yu. N., “Kvaternionnoe reshenie zadachi optimalnogo upravleniya orientatsiei orbity kosmicheskogo apparata”, Bortovye integrirovannye kompleksy i sovremennye problemy upravleniya, Sb. tr. mezhdunar. konf., MAI, M., 1997, 59–60

[9] Sergeev D. A., Chelnokov Yu. N., “Optimalnoe upravlenie orientatsiei orbity kosmicheskogo apparata”, Problemy tochnoi mekhaniki i upravleniya, Sb. nauch. tr. IPTMU RAN/ Sarat. gos. tekhn. un-t, Saratov, 2002, 64–75

[10] Afanaseva Yu. V., Chelnokov Yu. N., “Optimalnoe upravlenie orientatsiei orbity kosmicheskogo apparata”, Matematika. Mekhanika, Sb. nauch. tr., 7, Izd-vo Sarat. un-ta, Saratov, 2005, 153–155

[11] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR | Zbl

[12] Bordovitsyna T. V., Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki, Nauka, M., 1984, 136 pp. | MR | Zbl