The theorem on existence and uniqueness of the solution of one boundary value problem in strip for degenerate elliptic equations of higher order
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 8-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorem on the existence and uniqueness of the solution of the boundary value problem in the strip for one degenerate elliptic equations of higher order, which degenerate on one of boundary of the strip in the third-order equation by one variable, is proved.
@article{ISU_2012_12_3_a1,
     author = {A. D. Baev and S. S. Buneev},
     title = {The theorem on existence and uniqueness of the solution of one boundary value problem in strip for degenerate elliptic equations of higher order},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {8--17},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a1/}
}
TY  - JOUR
AU  - A. D. Baev
AU  - S. S. Buneev
TI  - The theorem on existence and uniqueness of the solution of one boundary value problem in strip for degenerate elliptic equations of higher order
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 8
EP  - 17
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a1/
LA  - ru
ID  - ISU_2012_12_3_a1
ER  - 
%0 Journal Article
%A A. D. Baev
%A S. S. Buneev
%T The theorem on existence and uniqueness of the solution of one boundary value problem in strip for degenerate elliptic equations of higher order
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 8-17
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a1/
%G ru
%F ISU_2012_12_3_a1
A. D. Baev; S. S. Buneev. The theorem on existence and uniqueness of the solution of one boundary value problem in strip for degenerate elliptic equations of higher order. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a1/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183

[2] Oleinik O. A., “Ob uravneniyakh ellipticheskogo tipa, vyrozhdayuschikhsya na granitse oblasti”, Dokl. AN SSSR, 87:6 (1952), 885–887 | MR

[3] Glushko V. P., “Otsenki v $L_2$ i razreshimost obschikh granichnykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Tr. Mosk. mat. o-va, 23, 1970, 113–178 | MR | Zbl

[4] Rukavishnikov V. A., Ereklintsev A. G., “O koertsitivnosti $R_\nu $-obobschennogo resheniya pervoi kraevoi zadachi s soglasovannym vyrozhdeniem iskhodnykh dannykh”, Differents. uravneniya, 41:12 (2005), 1680–1689 | MR | Zbl

[5] Vishik M. I., Grushin V. V., “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Mat. sb., 80(122):4 (1969), 455–491 | MR | Zbl

[6] Vishik M. I., Grushin V. V., “Vyrozhdayuschiesya ellipticheskie differentsialnye i psevdodifferentsialnye operatory”, UMN, 25:4 (1970), 29–56 | MR | Zbl

[7] Glushko V. P., “Teoremy razreshimosti kraevykh zadach dlya odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. seminara akad. S. L. Soboleva, 2, Novosibirsk, 1978, 49–68 | MR | Zbl

[8] Glushko V. P., Apriornye otsenki reshenii kraevykh zadach dlya odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka, Dep. v VINITI 27.03.79, No 1048-79, Voronezh. gos. un-t, Voronezh, 1979, 47 pp. | MR

[9] Levendorskii S. Z., “Kraevye zadachi v poluprostranstve dlya kvaziellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na granitse”, Mat. sb., 111(153):4 (1980), 483–502 | MR | Zbl

[10] Iskhokov S. A., “O gladkosti resheniya ellipticheskogo uravneniya s nestepennym vyrozhdeniem”, Dokl. AN, 378:3 (2001), 306–309 | MR | Zbl

[11] Baev A. D., Kachestvennye metody teorii kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii, Voronezh, 2008, 240 pp.

[12] Baev A. D., “Ob odnoi kraevoi zadache v polose dlya vyrozhdayuschegosya ellipticheskogo uravneniya vysokogo poryadka”, Vestn. Samarsk. gos. un-ta. Ser. Estestv. nauki, 2008, no. 3(62), 27–39 | MR

[13] Baev A. D., “Ob obschikh kraevykh zadachakh v poluprostranstve dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. AN, 422:6 (2008), 727–728 | MR | Zbl

[14] Glushko V. P., Lineinye vyrozhdayuschiesya differentsialnye uravneniya, Voronezh, 1972, 193 pp.

[15] Lions Zh., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, M., 1971, 371 pp.