The correctness of the Dirichlet problem in the cylindric domain for equation Laplase
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

Thes paper shows is uniquely solvable solitions the Dirichlet problem in the cylindric domain for equation Laplase.
@article{ISU_2012_12_3_a0,
     author = {S. A. Aldashev},
     title = {The correctness of the {Dirichlet} problem in the cylindric domain for equation {Laplase}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The correctness of the Dirichlet problem in the cylindric domain for equation Laplase
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 3
EP  - 7
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a0/
LA  - ru
ID  - ISU_2012_12_3_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The correctness of the Dirichlet problem in the cylindric domain for equation Laplase
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 3-7
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a0/
%G ru
%F ISU_2012_12_3_a0
S. A. Aldashev. The correctness of the Dirichlet problem in the cylindric domain for equation Laplase. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 3-7. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a0/

[1] Bitsadze A. V., Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959, 164 pp.

[2] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966, 203 pp. | Zbl

[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR | Zbl

[4] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp. | MR

[6] Aldashev S. A., Kraevye zadachi dlya mnogomernykh giperbolicheskikh i smeshannykh uravnenii, Gylym, Almaty, 1994, 170 pp.

[7] Aldashev S. A., “O zadachakh Darbu dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 34:1 (1998), 64–68 | MR | Zbl

[8] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 254 pp. | MR

[9] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965, 703 pp. | MR

[10] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v 2 t., v. 2, Nauka, M., 1974, 295 pp. | MR

[11] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR