Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic integration of elasticity theory 3D equations is fulfilled for the case of multilayered arbitrary-shaped thin-walled shells. The tangential and the transverse long-wave low-frequency approximations are constructed. The governing 2D equations are derived.
@article{ISU_2012_12_2_a8,
     author = {M. V. Wilde and L. Yu. Kossovich and Yu. V. Shevtsova},
     title = {Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a8/}
}
TY  - JOUR
AU  - M. V. Wilde
AU  - L. Yu. Kossovich
AU  - Yu. V. Shevtsova
TI  - Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 56
EP  - 64
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a8/
LA  - ru
ID  - ISU_2012_12_2_a8
ER  - 
%0 Journal Article
%A M. V. Wilde
%A L. Yu. Kossovich
%A Yu. V. Shevtsova
%T Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 56-64
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a8/
%G ru
%F ISU_2012_12_2_a8
M. V. Wilde; L. Yu. Kossovich; Yu. V. Shevtsova. Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 56-64. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a8/

[1] Kaplunov J. D., Kossovich L. Yu., Nolde E. V., Dynamics of thin walled elastic bodies, Academic Press, San Diego, 1998, 226 pp. | MR | Zbl

[2] Kossovich L. Yu., Nestatsionarnye zadachi teorii uprugikh tonkikh obolochek, Izd-vo Sarat. un-ta, Saratov, 1986, 176 pp.

[3] Kossovich L. Yu., Kaplunov Yu. D., “Asimptoticheskii analiz nestatsionarnykh uprugikh voln v tonkikh obolochkakh vrascheniya pri udarnykh tortsevykh vozdeistviyakh”, Izv. Sarat. un-ta, 1:2 (2001), 111–131 | MR

[4] Kaplunov Yu. D., Kirillova I. V., Kossovich L. Yu., “Asimptoticheskoe integrirovanie dinamicheskikh uravnenii teorii uprugosti dlya sluchaya tonkikh obolochek”, PMM, 57:1 (1993), 83–91 | MR | Zbl

[5] Kossovich L. Yu., Shevtsova Yu. V., “Asimptoticheskie priblizheniya trekhmernykh dinamicheskikh uravnenii teorii uprugosti v sluchae dvukhsloinykh plastin”, Problemy prochnosti i plastichnosti, mezhvuz. sb., 76, Izd-vo Nizhegorod. un-ta, N. Novgorod, 2005, 102–111

[6] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1971, 446 pp. | MR