Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem is studied for arbitrary order differential operators on noncompact graphs. A uniqueness theorem of recovering potentials from the Weyl matrices is proved.
@article{ISU_2012_12_2_a5,
     author = {V. A. Yurko},
     title = {Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 33
EP  - 41
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/
LA  - ru
ID  - ISU_2012_12_2_a5
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 33-41
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/
%G ru
%F ISU_2012_12_2_a5
V. A. Yurko. Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 33-41. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/

[1] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[2] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl

[3] Brown B. M., Weikard R., “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[4] Yurko V. A., “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl

[5] Yurko V. A., “An inverse problem for Sturm–Liouville operators on A-graphs”, Applied Math. Letters, 23:8 (2010), 875–879 | DOI | MR | Zbl

[6] Yurko V. A., “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. of Inverse and Ill-Posed Proplems, 18:3 (2010), 245–261 | DOI | MR | Zbl

[7] Yurko V. A., “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov na nekompaktnykh prostranstvennykh setyakh”, Dif. uravneniya, 44:12 (2008), 1658–1666 | MR

[8] Gerasimenko N. I., “Obratnaya zadacha rasseyaniya na nekompaktnom grafe”, TMF, 74:2 (1988), 187–200 | MR

[9] Yurko V. A., “An inverse problem for higher-order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903 | DOI | MR | Zbl

[10] Yurko V. A., “Obratnye zadachi dlya differentsialnykh operatorov proizvolnykh poryadkov na derevyakh”, Mat. zametki, 83:1 (2008), 139–152 | DOI | MR | Zbl

[11] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[12] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[13] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, 28, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl

[14] Yurko V. A., Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[15] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[16] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[17] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[18] Freiling G., Yurko V. A., “Inverse problems for differential operators on graphs with general matching conditions”, Applicable Analysis, 86:6 (2007), 653–667 | DOI | MR | Zbl