Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem is studied for arbitrary order differential operators on noncompact graphs. A uniqueness theorem of recovering potentials from the Weyl matrices is proved.
@article{ISU_2012_12_2_a5,
     author = {V. A. Yurko},
     title = {Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 33
EP  - 41
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/
LA  - ru
ID  - ISU_2012_12_2_a5
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 33-41
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/
%G ru
%F ISU_2012_12_2_a5
V. A. Yurko. Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 33-41. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/