Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_2_a5, author = {V. A. Yurko}, title = {Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {33--41}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/} }
TY - JOUR AU - V. A. Yurko TI - Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 33 EP - 41 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/ LA - ru ID - ISU_2012_12_2_a5 ER -
%0 Journal Article %A V. A. Yurko %T Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 33-41 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/ %G ru %F ISU_2012_12_2_a5
V. A. Yurko. Uniqueness of recovering arbitrary order differential operators on noncompact spatial networks. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 33-41. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a5/
[1] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl
[2] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl
[3] Brown B. M., Weikard R., “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl
[4] Yurko V. A., “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl
[5] Yurko V. A., “An inverse problem for Sturm–Liouville operators on A-graphs”, Applied Math. Letters, 23:8 (2010), 875–879 | DOI | MR | Zbl
[6] Yurko V. A., “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. of Inverse and Ill-Posed Proplems, 18:3 (2010), 245–261 | DOI | MR | Zbl
[7] Yurko V. A., “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov na nekompaktnykh prostranstvennykh setyakh”, Dif. uravneniya, 44:12 (2008), 1658–1666 | MR
[8] Gerasimenko N. I., “Obratnaya zadacha rasseyaniya na nekompaktnom grafe”, TMF, 74:2 (1988), 187–200 | MR
[9] Yurko V. A., “An inverse problem for higher-order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903 | DOI | MR | Zbl
[10] Yurko V. A., “Obratnye zadachi dlya differentsialnykh operatorov proizvolnykh poryadkov na derevyakh”, Mat. zametki, 83:1 (2008), 139–152 | DOI | MR | Zbl
[11] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR
[12] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl
[13] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, 28, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl
[14] Yurko V. A., Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, Amsterdam, 2000 | MR | Zbl
[15] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl
[16] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl
[17] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[18] Freiling G., Yurko V. A., “Inverse problems for differential operators on graphs with general matching conditions”, Applicable Analysis, 86:6 (2007), 653–667 | DOI | MR | Zbl