Frames and periodic groups of operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some properties of periodic groups of operators which connected with frames theory are considered. We proof that there are no strongly continuous and uniformly bounded periodic one-parameter group of operators in Banach space which eigenvectors are cross-frame.
@article{ISU_2012_12_2_a2,
     author = {S. A. Kreis},
     title = {Frames and periodic groups of operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--18},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/}
}
TY  - JOUR
AU  - S. A. Kreis
TI  - Frames and periodic groups of operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 14
EP  - 18
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
LA  - ru
ID  - ISU_2012_12_2_a2
ER  - 
%0 Journal Article
%A S. A. Kreis
%T Frames and periodic groups of operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 14-18
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
%G ru
%F ISU_2012_12_2_a2
S. A. Kreis. Frames and periodic groups of operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/

[1] Kuptsov N. P., “Pryamye i obratnye teoremy teorii priblizhenii i polugruppy operatorov”, UMN, 23:4 (1968), 117–178 | MR | Zbl

[2] Terekhin A. P., “Ogranichennaya gruppa operatorov i nailuchshee priblizhenie”, Differentsialnye uravneniya i vychislitelnaya matematika, mezhvuz. nauch. sb., 2, Saratov, 1975, 3–28 | Zbl

[3] Kuznetsova T. A., “O podprostranstvakh tipa $B_\sigma$ v prostranstvakh s bazisom”, Differentsialnye uravneniya i vychislitelnaya matematika, mezhvuz. nauch. sb., 6, ch. 2, Saratov, 1976, 140–151 | Zbl

[4] Kreis S. A., “Alternativnye dualnye freimy v banakhovykh prostranstvakh”, Matematika. Mekhanika, sb. nauch. tr., 11, Saratov, 2009, 36–38

[5] Dei M. M., Normirovannye lineinye prostranstva, Inostr. lit., M., 1961, 232 pp. | MR

[6] Grochenig K., “Describing functions: atomic decompositions versus frames”, Monat. Math., 112 (1991), 1–41 | DOI | MR

[7] Terekhin P. A., “Freimy v banakhovom prostranstve”, Funktsionalnyi analiz i ego prilozheniya, 44:3 (2010), 50–62 | DOI | MR | Zbl