Frames and periodic groups of operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper some properties of periodic groups of operators which connected with frames theory are considered. We proof that there are no strongly continuous and uniformly bounded periodic one-parameter group of operators in Banach space which eigenvectors are cross-frame.
@article{ISU_2012_12_2_a2,
     author = {S. A. Kreis},
     title = {Frames and periodic groups of operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--18},
     year = {2012},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/}
}
TY  - JOUR
AU  - S. A. Kreis
TI  - Frames and periodic groups of operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 14
EP  - 18
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
LA  - ru
ID  - ISU_2012_12_2_a2
ER  - 
%0 Journal Article
%A S. A. Kreis
%T Frames and periodic groups of operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 14-18
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
%G ru
%F ISU_2012_12_2_a2
S. A. Kreis. Frames and periodic groups of operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/

[1] Kuptsov N. P., “Pryamye i obratnye teoremy teorii priblizhenii i polugruppy operatorov”, UMN, 23:4 (1968), 117–178 | MR | Zbl

[2] Terekhin A. P., “Ogranichennaya gruppa operatorov i nailuchshee priblizhenie”, Differentsialnye uravneniya i vychislitelnaya matematika, mezhvuz. nauch. sb., 2, Saratov, 1975, 3–28 | Zbl

[3] Kuznetsova T. A., “O podprostranstvakh tipa $B_\sigma$ v prostranstvakh s bazisom”, Differentsialnye uravneniya i vychislitelnaya matematika, mezhvuz. nauch. sb., 6, ch. 2, Saratov, 1976, 140–151 | Zbl

[4] Kreis S. A., “Alternativnye dualnye freimy v banakhovykh prostranstvakh”, Matematika. Mekhanika, sb. nauch. tr., 11, Saratov, 2009, 36–38

[5] Dei M. M., Normirovannye lineinye prostranstva, Inostr. lit., M., 1961, 232 pp. | MR

[6] Grochenig K., “Describing functions: atomic decompositions versus frames”, Monat. Math., 112 (1991), 1–41 | DOI | MR

[7] Terekhin P. A., “Freimy v banakhovom prostranstve”, Funktsionalnyi analiz i ego prilozheniya, 44:3 (2010), 50–62 | DOI | MR | Zbl