Frames and periodic groups of operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some properties of periodic groups of operators which connected with frames theory are considered. We proof that there are no strongly continuous and uniformly bounded periodic one-parameter group of operators in Banach space which eigenvectors are cross-frame.
@article{ISU_2012_12_2_a2,
     author = {S. A. Kreis},
     title = {Frames and periodic groups of operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--18},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/}
}
TY  - JOUR
AU  - S. A. Kreis
TI  - Frames and periodic groups of operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 14
EP  - 18
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
LA  - ru
ID  - ISU_2012_12_2_a2
ER  - 
%0 Journal Article
%A S. A. Kreis
%T Frames and periodic groups of operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 14-18
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/
%G ru
%F ISU_2012_12_2_a2
S. A. Kreis. Frames and periodic groups of operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 14-18. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a2/