Modelling of cracking in the strip of variable thickness
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical description of the model crack nucleation in a strip of variable thickness was conducted. Definition of the unknown parameters that characterize the nucleus crack is reduced to solving a system of singular integral equations. The condition that determines the critical value of external load at which cracking occurs was obtained.
@article{ISU_2012_12_2_a13,
     author = {M. V. Mirsalimov},
     title = {Modelling of cracking in the strip of variable thickness},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a13/}
}
TY  - JOUR
AU  - M. V. Mirsalimov
TI  - Modelling of cracking in the strip of variable thickness
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 95
EP  - 102
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a13/
LA  - ru
ID  - ISU_2012_12_2_a13
ER  - 
%0 Journal Article
%A M. V. Mirsalimov
%T Modelling of cracking in the strip of variable thickness
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 95-102
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a13/
%G ru
%F ISU_2012_12_2_a13
M. V. Mirsalimov. Modelling of cracking in the strip of variable thickness. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 95-102. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a13/

[1] Panasyuk V. V., Mekhanika kvazikhrupkogo razrusheniya materialov, Nauk. dumka, Kiev, 1991, 416 pp.

[2] Uflyand Ya. S., Integralnye preobrazovaniya v zadachakh teorii uprugosti, Nauka, L., 1967, 420 pp. | MR

[3] Panasyuk V. V., Savruk M. P., Datsyshin A. P., Raspredelenie napryazhenii okolo treschin v plastinakh i obolochkakh, Nauk. dumka, Kiev, 1976, 443 pp. | MR

[4] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966, 707 pp. | Zbl

[5] Mirsalimov V. M., Neodnomernye uprugoplasticheskie zadachi, Nauka, M., 1987, 256 pp. | Zbl