Analysis of algorithms study of stability of thin-walled shells
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 63-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider three variants of algorithms for studying the stability of thin-shell: An algorithm based on the Ritz method and iterative processes, an algorithm based on the method of steepest descent, the algorithm based on a method of extending the solution to the parameter. Analyzes the results of the study of shells produced using these algorithms.
@article{ISU_2012_12_1_a9,
     author = {V. V. Karpov},
     title = {Analysis of algorithms study of stability of thin-walled shells},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a9/}
}
TY  - JOUR
AU  - V. V. Karpov
TI  - Analysis of algorithms study of stability of thin-walled shells
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 63
EP  - 69
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a9/
LA  - ru
ID  - ISU_2012_12_1_a9
ER  - 
%0 Journal Article
%A V. V. Karpov
%T Analysis of algorithms study of stability of thin-walled shells
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 63-69
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a9/
%G ru
%F ISU_2012_12_1_a9
V. V. Karpov. Analysis of algorithms study of stability of thin-walled shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 63-69. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a9/

[1] Karpov V. V., Matematicheskoe modelirovanie, algoritmy issledovaniya modeli, vychislitelnyi eksperiment v teorii obolochek, SPb., 2006, 330 pp.

[2] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek. Ch. 1: Modeli i algoritmy issledovaniya prochnosti i ustoichivosti podkreplennykh obolochek vrascheniya, v 2 ch., M., 2010, 286 pp.

[3] Baranova D. A., Karpov V. V., “Algoritmy issledovaniya ustoichivosti obolochek, osnovannye na metode naiskoreishego spuska”, Tr. sedmoi Vseros. nauch. konf. s mezhdunar. uchastiem. Chast 1, v 2 ch., Matematicheskoe modelirovanie i kraevye zadachi, Samara, 2010, 47–51

[4] Karpov V. V., Ignatev O. V., Salnikov A. Yu., Nelineinye matematicheskie modeli deformirovaniya obolochek peremennoi tolschiny i algoritmy ikh issledovaniya, M.–SPb., 2002, 420 pp.

[5] Karpov V. V., Kudryavtsev V. K., “Ustoichivost rebristykh pologikh obolochek pri dlitelnom nagruzhenii”, Vestn. VolgGASU. Cer. Ctroitelstvo i arkhitektura, 2006, no. 6(21), 53–57

[6] Karpov V. V., Filatov V. N., “Zakriticheskie deformatsii gibkikh plastin v temperaturnom pole s uchetom izmeneniya svoistv materiala ot temperatury”, Tr. VII Vsesoyuz. konf. po teorii plastin i obolochek, M., 1970, 276–279

[7] Karpov V. V., Petrov V. V., “Utochnenie reshenii pri issledovanii shagovykh metodov v teorii gibkikh plastin i obolochek”, Izv. AN SSSR. MTT, 1975, no. 5, 189–191