Mathematical modelling of critical speed of the multistage core at longitudinal blow
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling of longitudinal elastic central blow of a multistage core about a rigid barrier is carried out, at not keeping communications. Mathematical modeling is carried out by the exact analytical decision of the wave differential equation by a method of Dalamber with the task of necessary initial and boundary conditions. With application of the formula of Euler analytical expression for calculation of critical pretonic speed at which there comes loss of stability of a step core is received.
@article{ISU_2012_12_1_a8,
     author = {A. A. Bityurin},
     title = {Mathematical modelling of critical speed of the multistage core at longitudinal blow},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a8/}
}
TY  - JOUR
AU  - A. A. Bityurin
TI  - Mathematical modelling of critical speed of the multistage core at longitudinal blow
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 56
EP  - 62
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a8/
LA  - ru
ID  - ISU_2012_12_1_a8
ER  - 
%0 Journal Article
%A A. A. Bityurin
%T Mathematical modelling of critical speed of the multistage core at longitudinal blow
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 56-62
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a8/
%G ru
%F ISU_2012_12_1_a8
A. A. Bityurin. Mathematical modelling of critical speed of the multistage core at longitudinal blow. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 56-62. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a8/

[1] Lavrentev M. A., Ishlinskii A. Yu., “Dinamicheskie formy poteri ustoichivosti uprugikh sistem”, Dokl. AN SSSR, 64:6 (1949), 779–782 | MR | Zbl

[2] Malyshev B. M., “Ustoichivost sterzhnya pri udarnom szhatii”, Izv. AN SSSR. MTT, 1966, no. 4, 137–142

[3] Volmir A. S., Ustoichivost uprugikh sistem, GITTL, M., 1962, 880 pp. | MR

[4] Malyi V. I., “Dlinnovolnovoe priblizhenie v zadachakh o potere ustoichivosti pri udare”, Izv. AN SSSR. MTT, 1972, no. 4, 138–144

[5] Malyi V. I., “Vypuchivanie sterzhnya pri prodolnom udare. Malye progiby”, Izv. AN SSSR. MTT, 1973, no. 4, 181–186

[6] Malyi V. I., “Vypuchivanie sterzhnya pri prodolnom udare. Bolshie progiby”, Izv. AN SSSR. MTT, 1975, no. 1, 52–61

[7] Alfutov N. A., Osnovy rascheta na ustoichivost uprugikh sistem, Mashinostroenie, M., 1978, 312 pp. | MR

[8] Panovko Ya. G., Gubanova I. I., Ustoichivost i kolebaniya uprugikh sistem, Nauka, M., 1987, 352 pp. | MR | Zbl

[9] Timoshenko S. P., Ustoichivost sterzhnei, plastin i obolochek, Nauka, M., 1974, 808 pp. | MR

[10] Alimov O. D., Manzhosov V. K., Eremyants V. E., Udar. Rasprostranenie voln deformatsii v udarnykh sistemakh, Nauka, M., 1985, 354 pp.

[11] Bityurin A. A., Manzhosov V. K., “Modelirovanie prodolnogo udara odnorodnykh sterzhnei pri neuderzhivayuschikh svyazyakh”, Vestn. UlGTU, 2005, no. 3, 23–25

[12] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Spravochnik po soprotivleniyu materialov, Nauk. dumka, Kiev, 1989, 732 pp.