Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author offers a new approach to the Riemann–Hilbert boundary value problem in multiconnected domain. The approach bases on certain construction of solution of corresponding homogeneous problem including determination of analytic function by known boundary values of its argument circular domain.
@article{ISU_2012_12_1_a5,
     author = {R. B. Salimov},
     title = {Modification of new approach to solution of the {Hilbert} boundary value problem for analytic function in multi-connected circular domain},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {32--38},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a5/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 32
EP  - 38
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a5/
LA  - ru
ID  - ISU_2012_12_1_a5
ER  - 
%0 Journal Article
%A R. B. Salimov
%T Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 32-38
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a5/
%G ru
%F ISU_2012_12_1_a5
R. B. Salimov. Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a5/

[1] Salimov R. B., “Novyi podkhod k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi oblasti”, Izv. vuzov. Matematika, 2000, no. 2, 60–64 | MR | Zbl

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR | Zbl

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[4] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovykh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[5] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl

[6] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 495 pp. | MR | Zbl