Optimal Eulerian modification of digraphs by addition of arcs
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 102-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Тhe following problem is solved: given a directed graph, it is necessary to add to it a minimal number of arcs to obtain an Eulerian directed graph.
@article{ISU_2012_12_1_a14,
     author = {A. V. Gavrikov},
     title = {Optimal {Eulerian} modification of digraphs by addition of arcs},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {102--109},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a14/}
}
TY  - JOUR
AU  - A. V. Gavrikov
TI  - Optimal Eulerian modification of digraphs by addition of arcs
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 102
EP  - 109
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a14/
LA  - ru
ID  - ISU_2012_12_1_a14
ER  - 
%0 Journal Article
%A A. V. Gavrikov
%T Optimal Eulerian modification of digraphs by addition of arcs
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 102-109
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a14/
%G ru
%F ISU_2012_12_1_a14
A. V. Gavrikov. Optimal Eulerian modification of digraphs by addition of arcs. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 102-109. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a14/

[1] Salii V. N., “Optimalnye rekonstruktsii grafov”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, Saratov, 2008, 59–65

[2] Gavrikov A. V., “Optimalnaya pereorientatsiya dug orgrafa, privodyaschaya k eilerovu orgrafu”, Nauka i obrazovanie: problemy i perspektivy, materialy 11-i regionalnoi nauch.-prakt. konf. asp., stud. i uchaschikhsya (Biisk, 15–16 maya 2009 g.), v 2 ch., Ch. 2, Biisk, 2009, 271–273

[3] Gavrikov A. V., “Optimalnaya kvazieilerova rekonstruktsiya orgrafa putem udaleniya dug”, Nauchnye issledovaniya studentov Saratovskogo gosudarstvennogo universiteta, materialy itog. stud. nauch. konf., Saratov, 2010, 52–54

[4] Gavrikov A. V., Optimalnye eilerovy rekonstruktsii orientirovannykh grafov, Svidetelstvo o gos. registratsii programmy dlya EVM No 2100616499, vydannoe Rospatentom, zaregistr. v Reestre programm dlya EVM 30.09.2010

[5] Basaker R., Saati T., Konechnye grafy i seti, per. s angl., M., 1973

[6] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, M., 1997 | MR | Zbl

[7] Sedzhvik R., Fundamentalnye algoritmy na C++. Algoritmy na grafakh, per. s angl., SPb., 2002