Influence of slipping on viscosimetric flow of a~elastoviscoplastic material between rigid coaxial cylinders
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The viscoplastic flow of an incompressible elastoviscoplastic material between two rigid coaxial cylindrical surfaces is considered when slipping of a material is possible at one of them. The solution is constructed using the model of large elastoviscoplastic deformations. Reversible deformation, development and braking of a viscoplastic flow, unloading and deformation under rotation in the opposite direction are considered. Laws of movement of elastic-plastic boundaries are received.
@article{ISU_2012_12_1_a13,
     author = {A. S. Ustinova},
     title = {Influence of slipping on viscosimetric flow of a~elastoviscoplastic material between rigid coaxial cylinders},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a13/}
}
TY  - JOUR
AU  - A. S. Ustinova
TI  - Influence of slipping on viscosimetric flow of a~elastoviscoplastic material between rigid coaxial cylinders
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 93
EP  - 101
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a13/
LA  - ru
ID  - ISU_2012_12_1_a13
ER  - 
%0 Journal Article
%A A. S. Ustinova
%T Influence of slipping on viscosimetric flow of a~elastoviscoplastic material between rigid coaxial cylinders
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 93-101
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a13/
%G ru
%F ISU_2012_12_1_a13
A. S. Ustinova. Influence of slipping on viscosimetric flow of a~elastoviscoplastic material between rigid coaxial cylinders. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a13/

[1] Bakhshiyan F. A., “Vraschenie zhestkogo tsilindra v vyazkoplastichnoi srede”, PMM, 12:6 (1948), 650–661

[2] Bykovtsev G. I., Chernyshov A. D., “O vyazkoplasticheskom techenii v nekrugovykh tsilindrakh pri nalichii perepada davleniya”, PMTF, 1964, no. 4, 94–96

[3] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 208 pp. | MR | Zbl

[4] Myasnikov V. P., “Nekotorye tochnye resheniya dlya pryamolineinykh dvizhenii vyazkoplasticheskoi sredy”, PMTF, 1961, no. 2, 79–86

[5] Ogibalov P. M., Mirzadzhanzade A. Kh., Nestatsionarnye dvizheniya vyazkoplasticheskikh sred, Izd-vo Mosk. un-ta, M., 1970, 415 pp.

[6] Rezunov A. V., Chernyshov A. D., “Zadacha o chistom sdvige vyazkoplasticheskogo materiala mezhdu dvumya tsilindricheskimi poverkhnostyami”, Mekhanika deformiruemogo tverdogo tela, mezhvuz. sb., Volzhskaya kommuna, Kuibyshev, 1975, 32–36

[7] Safronchik A. I., “Vraschenie tsilindra s peremennoi skorostyu v vyazkoplastichnoi srede”, PMM, 23:6 (1959), 998–1014

[8] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, Dokl. AN SSSR, 347:2 (1996), 199–201 | Zbl

[9] Kovtanyuk L. V., Shitikov A. V., “O teorii bolshikh uprugoplasticheskikh deformatsii pri uchete temperaturnykh i reologicheskikh effektov”, Vestn. DVO RAN, 2006, no. 4, 87–93

[10] Znamenskii V. A., Ivlev D. D., “Ob uravneniyakh vyazkoplasticheskogo tela pri kusochno-lineinykh potentsialakh”, Izv. AN SSSR. OTN. Mekhanika i mashinostroenie, 1963, no. 6, 114–118