Application of generalized functions in dynamical contact problems of wing aeroelasaticity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 69-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The range of problems dealing with analysis of deformed state of thin elastic wing at the oscillations in limited acoustic medium is considered in this article. The theory of generalized functions was chosen as an instrument for the mathematical research. By results of performed numerical experiment the existence of damp forces in the acoustic medium and resonance effects caused by elastic properties of the wing was confirmed.
@article{ISU_2012_12_1_a10,
     author = {E. P. Lukaschik},
     title = {Application of generalized functions in dynamical contact problems of wing aeroelasaticity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a10/}
}
TY  - JOUR
AU  - E. P. Lukaschik
TI  - Application of generalized functions in dynamical contact problems of wing aeroelasaticity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 69
EP  - 80
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a10/
LA  - ru
ID  - ISU_2012_12_1_a10
ER  - 
%0 Journal Article
%A E. P. Lukaschik
%T Application of generalized functions in dynamical contact problems of wing aeroelasaticity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 69-80
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a10/
%G ru
%F ISU_2012_12_1_a10
E. P. Lukaschik. Application of generalized functions in dynamical contact problems of wing aeroelasaticity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a10/