Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2011_11_4_a9, author = {M. V. Wilde and L. Yu. Kossovich}, title = {An asymptotic model for the far-field of {Rayleigh} wave in multilayered plate}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {74--86}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/} }
TY - JOUR AU - M. V. Wilde AU - L. Yu. Kossovich TI - An asymptotic model for the far-field of Rayleigh wave in multilayered plate JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 74 EP - 86 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/ LA - ru ID - ISU_2011_11_4_a9 ER -
%0 Journal Article %A M. V. Wilde %A L. Yu. Kossovich %T An asymptotic model for the far-field of Rayleigh wave in multilayered plate %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 74-86 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/ %G ru %F ISU_2011_11_4_a9
M. V. Wilde; L. Yu. Kossovich. An asymptotic model for the far-field of Rayleigh wave in multilayered plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 74-86. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/
[1] Lamb H., “On the propagation of tremors over the surface of an elastic solid”, Phil. Trans. R. Soc. (A), 203 (1904), 1–42 | DOI
[2] Rayleigh J. W. S., “On waves propagated along the plane surface of an elastic solid”, Proc. Lond. Math. Soc., 17:253 (1885), 4–11 | DOI | MR | Zbl
[3] Kossovich L. Yu., Kushekkaliev A. N., “Analiz priblizhenii v zadache Lemba dlya beskonechnogo uprugogo sloya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestv. nauki, 2003, no. 5, 10–22
[4] Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N.Y., 1957 | MR | Zbl
[5] Miklowitz J., “Elastic wave propagation”, Applied mechanics surveys, eds. H. N. Abramson, H. Liebowitz, J. M. Crowley, S. Juhasz, Washington, D.C., 1966
[6] Kaplunov Yu. D., Kossovich L. Yu., “Asimptoticheskaya model dlya vychisleniya dalnego polya volny Releya v sluchae uprugoi poluploskosti”, Dokl. AN, 395:4 (2004), 482–484 | MR
[7] Kossovich L. Yu., Kushekkaliev A. N., “Pole Releya v beskonechnom uprugom sloe”, Matematika. Mekhanika: sb. nauch. tr., 5, Saratov, 2003, 159–161
[8] Kovalev V. A., Kossovich L. Yu., Taranov O. G., “Dalnee pole volny Releya dlya uprugoi polupolosy pri deistvii tortsevoi nagruzki”, Izv. RAN. MTT, 2005, no. 5, 89–96 | MR
[9] Kossovich L. Yu., Kovalev V. A., Taranov O. G., “Pole Relaya v zadache Lemba dlya tsilindricheskoi obolochki”, Izvestiya vuzov. Severo-Kavkazskii region. Estestv. nauki, 2004, Spetsvypusk, 52–54
[10] Kovalev V. A., Taranov O. G., “Raschlenenie nestatsionarnogo NDS tsilindricheskikh obolochek pri udarnykh tortsevykh vozdeistviyakh normalnogo tipa”, Smeshannye zadachi mekhaniki deformiruemogo tverdogo tela, materialy V Ros. konf. s mezhdunar. uchastiem, ed. akad. N. F. Morozov, Saratov, 2005, 78–82
[11] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, M., 1974, 274 pp.
[12] Grinchenko V. T., Meleshko V. V., Garmonicheskie kolebaniya i volny v uprugikh telakh, Kiev, 1981, 284 pp. | MR | Zbl
[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, M., 1987, 688 pp. | MR
[14] Kaplunov J. D., Kossovich L. Yu., Nolde E. V., Dynamics of Thin Walled Elastic Bodies, San Diego, 1998, 226 pp. | MR | Zbl