An asymptotic model for the far-field of Rayleigh wave in multilayered plate
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic model is proposed, which allows to calculate far-field of Rayleigh wave in an infinite multilayered plate subjected to non-stationary surface load. The model is derived by using of the standard asymptotic techniques. As a result, a system of two one-dimensional integro-differential equations (head system) is obtained, which describes the propagation of Rayleigh waves along the plate surfaces. For the decaying wave fields in layers the boundary problems for elliptic equations are obtained. Head system is closed and can be solved separately, thus the problem is reduced to one-dimensional one. By deriving of the model it is assumed that the elastic properties of the layers satisfy the following condition: the speed of Rayleigh wave, for which the model is derived, is less than the shear wave speeds in all the layers.
@article{ISU_2011_11_4_a9,
     author = {M. V. Wilde and L. Yu. Kossovich},
     title = {An asymptotic model for the far-field of {Rayleigh} wave in multilayered plate},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/}
}
TY  - JOUR
AU  - M. V. Wilde
AU  - L. Yu. Kossovich
TI  - An asymptotic model for the far-field of Rayleigh wave in multilayered plate
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 74
EP  - 86
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/
LA  - ru
ID  - ISU_2011_11_4_a9
ER  - 
%0 Journal Article
%A M. V. Wilde
%A L. Yu. Kossovich
%T An asymptotic model for the far-field of Rayleigh wave in multilayered plate
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 74-86
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/
%G ru
%F ISU_2011_11_4_a9
M. V. Wilde; L. Yu. Kossovich. An asymptotic model for the far-field of Rayleigh wave in multilayered plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 74-86. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a9/

[1] Lamb H., “On the propagation of tremors over the surface of an elastic solid”, Phil. Trans. R. Soc. (A), 203 (1904), 1–42 | DOI

[2] Rayleigh J. W. S., “On waves propagated along the plane surface of an elastic solid”, Proc. Lond. Math. Soc., 17:253 (1885), 4–11 | DOI | MR | Zbl

[3] Kossovich L. Yu., Kushekkaliev A. N., “Analiz priblizhenii v zadache Lemba dlya beskonechnogo uprugogo sloya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestv. nauki, 2003, no. 5, 10–22

[4] Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N.Y., 1957 | MR | Zbl

[5] Miklowitz J., “Elastic wave propagation”, Applied mechanics surveys, eds. H. N. Abramson, H. Liebowitz, J. M. Crowley, S. Juhasz, Washington, D.C., 1966

[6] Kaplunov Yu. D., Kossovich L. Yu., “Asimptoticheskaya model dlya vychisleniya dalnego polya volny Releya v sluchae uprugoi poluploskosti”, Dokl. AN, 395:4 (2004), 482–484 | MR

[7] Kossovich L. Yu., Kushekkaliev A. N., “Pole Releya v beskonechnom uprugom sloe”, Matematika. Mekhanika: sb. nauch. tr., 5, Saratov, 2003, 159–161

[8] Kovalev V. A., Kossovich L. Yu., Taranov O. G., “Dalnee pole volny Releya dlya uprugoi polupolosy pri deistvii tortsevoi nagruzki”, Izv. RAN. MTT, 2005, no. 5, 89–96 | MR

[9] Kossovich L. Yu., Kovalev V. A., Taranov O. G., “Pole Relaya v zadache Lemba dlya tsilindricheskoi obolochki”, Izvestiya vuzov. Severo-Kavkazskii region. Estestv. nauki, 2004, Spetsvypusk, 52–54

[10] Kovalev V. A., Taranov O. G., “Raschlenenie nestatsionarnogo NDS tsilindricheskikh obolochek pri udarnykh tortsevykh vozdeistviyakh normalnogo tipa”, Smeshannye zadachi mekhaniki deformiruemogo tverdogo tela, materialy V Ros. konf. s mezhdunar. uchastiem, ed. akad. N. F. Morozov, Saratov, 2005, 78–82

[11] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, M., 1974, 274 pp.

[12] Grinchenko V. T., Meleshko V. V., Garmonicheskie kolebaniya i volny v uprugikh telakh, Kiev, 1981, 284 pp. | MR | Zbl

[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, M., 1987, 688 pp. | MR

[14] Kaplunov J. D., Kossovich L. Yu., Nolde E. V., Dynamics of Thin Walled Elastic Bodies, San Diego, 1998, 226 pp. | MR | Zbl