Propagation and reflection of harmonic waves in a~plane acoustic layer with non-homogeneous flexible walls
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 68-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

A plane acoustic layer bounded by elastic membranes, one of which has an insert with different material properties, is considered. The propagation and reflection of harmonic waves in such a layer is studied. The source of vibrations is an incident mode, coming from infinity. The solution in three regions (before the insert, under the insert, after the insert) is sought as modal expansion. The numerical results for the reflected power coefficient are presented.
@article{ISU_2011_11_4_a8,
     author = {A. I. Velmisova and M. V. Wilde and I. V. Kirillova},
     title = {Propagation and reflection of harmonic waves in a~plane acoustic layer with non-homogeneous flexible walls},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {68--73},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a8/}
}
TY  - JOUR
AU  - A. I. Velmisova
AU  - M. V. Wilde
AU  - I. V. Kirillova
TI  - Propagation and reflection of harmonic waves in a~plane acoustic layer with non-homogeneous flexible walls
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 68
EP  - 73
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a8/
LA  - ru
ID  - ISU_2011_11_4_a8
ER  - 
%0 Journal Article
%A A. I. Velmisova
%A M. V. Wilde
%A I. V. Kirillova
%T Propagation and reflection of harmonic waves in a~plane acoustic layer with non-homogeneous flexible walls
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 68-73
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a8/
%G ru
%F ISU_2011_11_4_a8
A. I. Velmisova; M. V. Wilde; I. V. Kirillova. Propagation and reflection of harmonic waves in a~plane acoustic layer with non-homogeneous flexible walls. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 68-73. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a8/

[1] Getman I. P., Lisitskii O. N., “Otrazhenie i prokhozhdenie zvukovykh voln cherez granitsu razdela dvukh sostykovannykh uprugikh polupolos”, PMM, 52:6 (1988), 1044–1048 | Zbl

[2] Getman I. P., Ustinov Yu. A., Matematicheskaya teoriya neregulyarnykh tverdykh volnovodov, Rostov-na-Donu, 1993, 144 pp.

[3] Grinchenko V. T., Gorodetskaya N. S., “Otrazhenie voln Lemba ot granitsy razdela v sostavnom volnovode”, Prikladnaya mekhanika, 21:5 (1985), 121–125 | MR

[4] Kaplunov Yu. D., Kirillova I. V., Postnova Yu. A., “Dispersiya voln v ploskom akusticheskom sloe s gibkimi uprugimi stenkami”, Akusticheskii zhurn., 50:6 (2004), 802–807

[5] Postnova Yu. A., “Dispersiya voln v ploskom akusticheskom sloe s uprugimi stenkami s razlichnymi geometricheskimi i materialnymi svoistvami”, Mekhanika deformiruemykh sred, 15, Saratov, 2004, 95–101

[6] Kirillova I. V., Postnova Yu. A., “Volny v ploskom akusticheskom sloe s kusochno-neodnorodnymi uprugimi svoistvami”, Smeshannye zadachi mekhaniki deformiruemogo tela, materialy V Ros. konf. s mezhdunar. uchastiem, ed. akad. N. F. Morozov, Saratov, 2005, 179–182

[7] Velmisova A. I., “Rasprostranenie i otrazhenie garmonicheskikh voln v ploskom akusticheskom sloe s gibkimi stenkami v sluchae razryva uprugikh svoistv na odnoi iz stenok”, Matematika. Mekhanika: sb. nauch. tr., 12, Saratov, 2010, 136–140

[8] Warren D. P., Lawrie J. B., Mohamed I. M., “Acoustic scattering in waveguides that are discontinuous in geometry and material property”, Wave Motion, 36 (2002), 119–142 | DOI | MR | Zbl

[9] Lawrie J. B., “On eigenfunction expansions associated with wave propagation along ducts with wave-bearing boundaries”, IMA J. Appl. Math., 72 (2007), 376–394 | DOI | MR | Zbl

[10] Lawrie J. B., “Comments on a class of orthogonality relation relevant to fluid-structure interaction”, Meccanica, forthcoming | MR