On classical solvability of one-dimensional mixed problem for fourth order semilinear biparabolic equations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 58-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and uniqueness of classical solution of one-dimensional mixed problem with Riquier type homogenous boundary conditions for one class of fourth order semilinear biparabolic equations are studied. A priori estimates method is used to prove the existence in large theorem for classical solution of mixed problem under consideration.
@article{ISU_2011_11_4_a7,
     author = {K. I. Khudaverdiyev and M. N. Heydarova},
     title = {On classical solvability of one-dimensional mixed problem for fourth order semilinear biparabolic equations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a7/}
}
TY  - JOUR
AU  - K. I. Khudaverdiyev
AU  - M. N. Heydarova
TI  - On classical solvability of one-dimensional mixed problem for fourth order semilinear biparabolic equations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 58
EP  - 67
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a7/
LA  - ru
ID  - ISU_2011_11_4_a7
ER  - 
%0 Journal Article
%A K. I. Khudaverdiyev
%A M. N. Heydarova
%T On classical solvability of one-dimensional mixed problem for fourth order semilinear biparabolic equations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 58-67
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a7/
%G ru
%F ISU_2011_11_4_a7
K. I. Khudaverdiyev; M. N. Heydarova. On classical solvability of one-dimensional mixed problem for fourth order semilinear biparabolic equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 58-67. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a7/