Cross-coupled type-III thermoelastic waves of a~given azimuthal number in a~waveguide under sidewall heat interchanging
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 86-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a study of cross-coupled type-III generalized thermoelastic waves of a given azimuthal order propagating via a long cylindrical waveguide with circular cross-section. Sidewall of the waveguide is assumed free from tractions and permeable to heat. The study is carried out in the framework of coupled generalized theory of type-III thermoelasticity (GNIII) consistent with the fundamental principles of continuum thermomechanics. The type-III theory combines the both possible mechanisms of heat transfer: thermodiffusion and wave. Type-III generalized thermoelasticity includes classical thermoelasticity (GNI/CTE) and the theory of hyperbolic thermoelasticity (GNII) as limiting cases. The GNII-theory can be formulated as a field theory and differential field equations are of hyperbolic analytical type. Closed solution of the coupled linear GNIII-thermoelasticity partial differential equations satisfying the required boundary conditions on the surface of waveguide including convective heat interchanging condition is obtained by the separation of variables technique. For a given azimuthal number the frequency equation is derived. A numerical analysis of frequency equation is carried out by Mathematica. A scheme of frequency equation roots localization is proposed and wavenumbers of the coupled type-III thermoelastic waves of the first and seventh azimuthal numbers are computed. A numerical study of the coupled thermoelastic waves of the 70th azimutal number is also presented. Some aspects of numerical realization of the proposed approach are discussed.
@article{ISU_2011_11_4_a10,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {Cross-coupled {type-III} thermoelastic waves of a~given azimuthal number in a~waveguide under sidewall heat interchanging},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {86--108},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a10/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - Cross-coupled type-III thermoelastic waves of a~given azimuthal number in a~waveguide under sidewall heat interchanging
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 86
EP  - 108
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a10/
LA  - ru
ID  - ISU_2011_11_4_a10
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T Cross-coupled type-III thermoelastic waves of a~given azimuthal number in a~waveguide under sidewall heat interchanging
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 86-108
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a10/
%G ru
%F ISU_2011_11_4_a10
V. A. Kovalev; Yu. N. Radayev. Cross-coupled type-III thermoelastic waves of a~given azimuthal number in a~waveguide under sidewall heat interchanging. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 86-108. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a10/

[1] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Saratov, 2010, 328 pp.

[2] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, M., 2009, 156 pp.

[3] Kovalev V. A., Radaev Yu. N., “Volnovye zadachi teorii polya i termomekhanika”, Matematicheskaya fizika i ee prilozheniya, materialy vtoroi mezhdunar. konf., eds. chl.-korr. RAN I. V. Volovich, prof. Yu. N. Radaev, Samara, 2010, 165–166

[4] Duhamel J., “Second Mémoire sur les Phenomenes Thermo-Mećanique”, J. de L'Ecole Polytech., 15 (1837), 1–57; Duhamel J., “Mémoire sur le Calcul des Actions Moléculaires Développées par les Changements de Température dans les Corps Solides”, Mémoirs par Divers Savants, v. 5, A l'Acad. Roy. des Sci. de l'Inst. de France, 1838, 440–498; Neumann F., Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers, Breslau, 1885

[5] Lebedev N. N., Temperaturnye napryazheniya v teorii uprugosti, M.–L., 1937, 110 pp.

[6] Maxwell J. C., “On the Dynamical Theory of Gases”, Phil. Trans. Royal Soc. Lond., 157 (1867), 49–88 | DOI

[7] Biot M. A., “Thermoelasticity and irreversible thermodynamics”, J. Appl. Phys., 27:3 (1956), 240–253 | DOI | MR | Zbl

[8] Joseph D. D., Preziozi L., “Heat waves”, Rev. Modern Physics, 61:1 (1989), 41–73 ; Joseph D. D., Preziozi L., “Addendum to the paper ‘Heat waves’ ”, Rev. Modern Physics, 62:2 (1990), 375–391 | DOI | MR | Zbl | DOI | MR

[9] McNelly T. F., Rogers S. J., Channin D. J., Rollefson R. J., Goubau W. M., Schmidt G. E., Krumhansl J. A., Pohl R. O., “Heat pulses in NaF: Onset of second sound”, Phys. Rev., 24:3 (1970), 100–102

[10] Jackson H. E., Walker C. T., McNelly T. F., “Second sound in NaF”, Phys. Rev. Letters, 25:1 (1970), 26–28 | DOI

[11] Rogers S. J., “Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals”, Phys. Rev. B, 3:4 (1971), 1440–1457 | DOI

[12] Pohl D. W., Irniger V., “Observation of second sound in NaF by means of light scattering”, Phys. Rev. Letters, 36:9 (1976), 480–483 | DOI

[13] Hardy R. J., Jaswal S. S., “Velocity of second sound in NaF”, Phys. Rev. B, 3:12 (1971), 4385–4387 | DOI

[14] Narayanamurti V., Dynes R. C., “Observation of second sound in Bismuth”, Phys. Rev. Letters, 28 (1972), 1461–1464 | DOI

[15] Lord H., Shulman Y., “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solid., 15 (1967), 299–309 | DOI | Zbl

[16] Cattaneo C., “Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée”, J. of Comptes-Rendus Hebdomadaires des Seances de l'Académie des Sciences, 247 (1958), 431–433 | MR

[17] Vernotte P., “Les paradoxes de la théorie continue de l'équation de la chaleur”, J. of Comptes-Rendus Hebdomadaires des Seances de l'Académie des Sciences, 246 (1958), 3154–3155 | MR

[18] Lykov A. V., Teoriya teploprovodnosti, M., 1967, 600 pp.

[19] Green A. E., Lindsay K. A., “Thermoelasticity”, J. Elasticity, 2 (1972), 1–7 | DOI | Zbl

[20] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Thermal Stresses, 15 (1992), 253–264 | DOI | MR

[21] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[22] Novatskii V., Dinamicheskie zadachi termouprugosti, M., 1970, 256 pp.

[23] Maugin G. A., “Towards an analytical mechanics of dissipative materials. II: Geom., Cont. and Micros”, Rend. Sem. Mat. Univ. Pol. Torino, 58:2 (2000), 171–180 | MR | Zbl

[24] Maugin G. A., Kalpakides V. K., “The slow march towards an analytical mechanics of dissipative materials”, Technische Mechanik, 22:2 (2002), 98–103

[25] Maugin G. A., Kalpakides V. K., “A Hamiltonian formulation for elasticity and thermoelasticity”, J. Phys. A: Math. Gen., 35 (2002), 10775–10788 | DOI | MR | Zbl

[26] Kalpakides V. K., Maugin G. A., “Canonical formulation and conservation laws of thermoelasticity”, Reports in Mathematical Physics, 53 (2004), 371–391 | DOI | MR | Zbl

[27] Puri P., Jordan P. M., “On the propagation of plane waves in type-III thermoelastic media”, Proc. Royal Soc. Lond. A, 460 (2004), 3203–3221 | DOI | MR | Zbl

[28] Kovalev V. A., Radaev Yu. N., “Volnovye chisla ploskikh GNIII-termouprugikh voln i neravenstva, obespechivayuschie ikh normalnost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 46–53

[29] Dhaliwal R. S., Majumdar S. R., Wang J., “Thermoelastic waves in an infinite solid caused by a line heat source”, Intern. J. Math. and Math. Sci., 20:2 (1997), 323–334 | DOI | MR | Zbl

[30] Kovalev V. A., Radaev Yu. N., “Rasprostranenie svyazannykh garmonicheskikh GNIII-termouprugikh voln v dlinnom tsilindricheskom volnovode, II”, Vestn. Chuvashskogo gos. ped. un-ta im. I. Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2010, no. 2(8), 207–255

[31] Kovalev V. A., Radaev Yu. N., Romanov A. E., “Prokhozhdenie teplovogo GNIII-volnovogo signala s vysokoi okruzhnoi garmonikoi cherez tsilindricheskii volnovod”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, sb. tr. mezhdunar. konf., posvyasch. 80-letiyu d-ra fiz.-mat. nauk, prof. D. D. Ivleva, Voronezh, 2010, 173–180