On the number of solutions of nonlinearity boundary value problems with a~Stieltjes integral
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain sufficient conditions for the existence of multiple solutions for nonlinear boundary value problem with a Stieltjes integral.
@article{ISU_2011_11_4_a1,
     author = {M. B. Davidova and S. A. Shabrov},
     title = {On the number of solutions of nonlinearity boundary value problems with {a~Stieltjes} integral},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {13--17},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a1/}
}
TY  - JOUR
AU  - M. B. Davidova
AU  - S. A. Shabrov
TI  - On the number of solutions of nonlinearity boundary value problems with a~Stieltjes integral
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 13
EP  - 17
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a1/
LA  - ru
ID  - ISU_2011_11_4_a1
ER  - 
%0 Journal Article
%A M. B. Davidova
%A S. A. Shabrov
%T On the number of solutions of nonlinearity boundary value problems with a~Stieltjes integral
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 13-17
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a1/
%G ru
%F ISU_2011_11_4_a1
M. B. Davidova; S. A. Shabrov. On the number of solutions of nonlinearity boundary value problems with a~Stieltjes integral. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 13-17. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a1/

[1] Pokornyi Yu. V., Penkin O. M., Borovskikh A. V., Pryadiev V. L., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, M., 2004, 272 pp.

[2] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, Uspekhi matematicheskikh nauk, 63:1(379) (2008), 111–154 | DOI | MR | Zbl

[3] Pokornyi Yu. V., Shabrov S. A., “Toward a Sturm–Liouville theory for an equation with generalized coefficients”, J. of Math. Sciences, 119:6 (2004), 769–787 | DOI | MR | Zbl

[4] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, M., 2009, 192 pp.

[5] Myshkis A. D., “O resheniyakh lineinogo odnorodnogo dvuchlennogo differentsialnogo neravenstva vtorogo poryadka s obobschënnym koeffitsientom”, Differentsialnye uravneniya, 32:5 (1996), 615–619 | MR | Zbl

[6] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, M., 1975, 512 pp. | MR