Approximating properties of solutions of the differential equation with integral boundary condition
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the use of the solution of the first-order differential equation the approximations to the continuous functions with integral boundary conditions are constructed.
@article{ISU_2011_11_3_a8,
     author = {A. A. Khromov and G. V. Khromova},
     title = {Approximating properties of solutions of the differential equation with integral boundary condition},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a8/}
}
TY  - JOUR
AU  - A. A. Khromov
AU  - G. V. Khromova
TI  - Approximating properties of solutions of the differential equation with integral boundary condition
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 63
EP  - 66
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a8/
LA  - ru
ID  - ISU_2011_11_3_a8
ER  - 
%0 Journal Article
%A A. A. Khromov
%A G. V. Khromova
%T Approximating properties of solutions of the differential equation with integral boundary condition
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 63-66
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a8/
%G ru
%F ISU_2011_11_3_a8
A. A. Khromov; G. V. Khromova. Approximating properties of solutions of the differential equation with integral boundary condition. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 63-66. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a8/

[1] Khromova G. V., “Priblizhayuschie svoistva rezolvent differentsialnykh operatorov v zadache priblizheniya funktsii i ikh proizvodnykh”, Zhurn. vychisl. mat. i mat. fiz., 38:7 (1998), 1106–1113 | MR | Zbl

[2] Khromov A. A., “Priblizhayuschie svoistva stepenei rezolventy operatora differentsirovaniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 75–78