On congruences of partial $n$-ary groupoids
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

$R_i$-congruence is defined for partial $n$-ary groupoids as a generalization of right congruence of a full binary groupoid. It is proved that for any $i$ the $R_i$-congruences of a partial $n$-ary groupoid $G$ form a lattice, where the congruence lattice of $G$ is not necessary a sublattice. An example is given, demonstrating that the congruence lattice of a partial $n$-ary groupoid is not always a sublattice of the equivalence relations lattice of $G$. The partial $n$-ary groupoids $G$ are characterized such that for some $i$, all the equivalence relations on $G$ are its $R_i$-congruences.
@article{ISU_2011_11_3_a6,
     author = {A. V. Reshetnikov},
     title = {On congruences of partial $n$-ary groupoids},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a6/}
}
TY  - JOUR
AU  - A. V. Reshetnikov
TI  - On congruences of partial $n$-ary groupoids
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 46
EP  - 51
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a6/
LA  - ru
ID  - ISU_2011_11_3_a6
ER  - 
%0 Journal Article
%A A. V. Reshetnikov
%T On congruences of partial $n$-ary groupoids
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 46-51
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a6/
%G ru
%F ISU_2011_11_3_a6
A. V. Reshetnikov. On congruences of partial $n$-ary groupoids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 46-51. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a6/

[1] V. A. Artamonov, V. N. Salii, L. A. Skornyakov i dr., Obschaya algebra, v 2 t., Gl. Universalnye algebry, v. 2, ed. L. A. Skornyakova, Nauka, Fizmatlit, M., 1991, 295–367

[2] Kozhukhov I. B., Reshetnikov A. V., “Algebry, u kotorykh vse otnosheniya ekvivalentnosti yavlyayutsya kongruentsiyami”, Fundamentalnaya i prikladnaya matematika, 16:3 (2010), 161–192 | MR

[3] Lyapin E. S., Evseev A. E., Chastichnye algebraicheskie deistviya, Obrazovanie, SPb., 1991, 163 pp. | MR | Zbl