Cramer's formulas for systems of linear equations and inequalities over Boolean algebra
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 43-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

There obtained analogies of classical Cramer's formulas for systems of linear equations and inequalities with square matrix of coefficients from Boolean algebra.
@article{ISU_2011_11_3_a5,
     author = {V. B. Poplavski},
     title = {Cramer's formulas for systems of linear equations and inequalities over {Boolean} algebra},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {43--46},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a5/}
}
TY  - JOUR
AU  - V. B. Poplavski
TI  - Cramer's formulas for systems of linear equations and inequalities over Boolean algebra
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 43
EP  - 46
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a5/
LA  - ru
ID  - ISU_2011_11_3_a5
ER  - 
%0 Journal Article
%A V. B. Poplavski
%T Cramer's formulas for systems of linear equations and inequalities over Boolean algebra
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 43-46
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a5/
%G ru
%F ISU_2011_11_3_a5
V. B. Poplavski. Cramer's formulas for systems of linear equations and inequalities over Boolean algebra. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 43-46. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a5/

[1] Duplii S. A., Kotulskaya O. I., “Kvazideterminanty, nekommutativnye determinanty i neobratimye supermatrichnye struktury”, Vestn. Kharkov. natsionalnogo un-ta, 585:1(21) (2003), 19–28

[2] Dieudoné J., “Les déterminants sur un corps noncommutatiff”, Bul. Soc. Math. France, 71 (1943), 27–45 | MR | Zbl

[3] Artin E., Geometricheskaya algebra, Nauka, M., 1969, 284 pp. | MR | Zbl

[4] Ponizovskii I. S., “Ob opredelitele matrits s elementami iz nekotorogo koltsa”, Mat. sbornik, 45(87):1 (1958), 3–16 | MR | Zbl

[5] Kirchei I. I., “Pravilo Kramera dlya kvaternionnykh sistem lineinykh uravnenii”, Fundamentalnaya i prikladnaya matematika, 13:4 (2007), 67–94 | MR | Zbl

[6] Sokolov O. B., “Primenenie bulevykh opredelitelei k analizu logicheskikh mnogopolyusnikov”, Uchenye zapiski Kazansk. gosun-ta, 123, no. 6, 1963, 155–164

[7] Chesley D. S., Bevis J. H., “Determinants for matrices over lattices”, Proc. Roy. Soc. Edinburgh. A, 68:2 (1969), 138–144 | MR | Zbl

[8] Reutenauer C., Straubing H., “Inversion of matrices over a commutative semiring”, J. of Algebra, 88 (1984), 350–360 | DOI | MR | Zbl

[9] Kuntzmann J., Théorie des réseaux (graphes), Dunod, Paris, 1972 | MR | Zbl

[10] Poplin P. L., Hartwig R. E., “Determinantal identities over commutative semirings”, Linear Algebra Appl., 387 (2004), 99–132 | DOI | MR | Zbl

[11] Poplavskii V. B., “O rangakh, klassakh Grina i teorii opredelitelei bulevykh matrits”, Diskretnaya matematika, 20:4 (2008), 42–60 | DOI | MR | Zbl

[12] Poplavskii V. B., “O razlozhenii opredelitelei bulevykh matrits”, Fundamentalnaya i prikladnaya matematika, 13:4 (2007), 199–223 | MR | Zbl

[13] Poplavskii V. B., “Obratimye i prisoedinennye bulevy matritsy”, Chebyshevckii sb., 6:1 (2005), 174–181 | MR | Zbl

[14] Rutherford D. E., “Inverses of Boolean matrices”, Proc. Glasgow Math. Assoc., 6:1 (1963), 49–53 | DOI | MR | Zbl

[15] Skornyakov L. A., “Obratimye matritsy nad distributivnymi strukturami”, Sib. mat. zhurn., 27:2 (1986), 182–185 | MR | Zbl