Generalization of method A.\,A.~Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the discrete self-conjugate operator $A$ operates in separable Hilbert space $\mathbb H$ and has the kernel resolvent with simple spectrum. Self-conjugate and limited operator $B$ operates also in $\mathbb H$. Then it is possible to find such number $\varepsilon>0$, that eigenvalues and eigenfunctions of the perturbation operator $A+\varepsilon B$ will be calculated on a method of Dorodnicyn.
@article{ISU_2011_11_3_a3,
     author = {E. M. Maleko},
     title = {Generalization of method {A.\,A.~Dorodnicyn} close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/}
}
TY  - JOUR
AU  - E. M. Maleko
TI  - Generalization of method A.\,A.~Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 20
EP  - 29
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/
LA  - ru
ID  - ISU_2011_11_3_a3
ER  - 
%0 Journal Article
%A E. M. Maleko
%T Generalization of method A.\,A.~Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 20-29
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/
%G ru
%F ISU_2011_11_3_a3
E. M. Maleko. Generalization of method A.\,A.~Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 20-29. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/

[1] Dorodnitsyn A. A., Izbrannye nauchnye trudy, v 2 t., v. 1, VTs RAN, M., 1997, 396 pp.

[2] Verzhbitskii V. M., Chislennye metody (matematicheskii analiz i obyknovennye differentsialnye uravneniya), ucheb. posobie dlya vuzov, Vyssh. shk., M., 2001, 382 pp.

[3] Lizorkin P. I., Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR

[4] Smirnov V. I., Kurs vysshei matematiki, v 5 t., v. 2, Nauka, M., 1967, 656 pp.

[5] Stepanov V. V., Kurs differentsialnykh uravnenii, Gos. izd-vo TTL, M., 1953, 468 pp.