Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 20-29
Cet article a éte moissonné depuis la source Math-Net.Ru
Let the discrete self-conjugate operator $A$ operates in separable Hilbert space $\mathbb H$ and has the kernel resolvent with simple spectrum. Self-conjugate and limited operator $B$ operates also in $\mathbb H$. Then it is possible to find such number $\varepsilon>0$, that eigenvalues and eigenfunctions of the perturbation operator $A+\varepsilon B$ will be calculated on a method of Dorodnicyn.
@article{ISU_2011_11_3_a3,
author = {E. M. Maleko},
title = {Generalization of method {A.} {A.~Dorodnicyn} close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {20--29},
year = {2011},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/}
}
TY - JOUR AU - E. M. Maleko TI - Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 20 EP - 29 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/ LA - ru ID - ISU_2011_11_3_a3 ER -
%0 Journal Article %A E. M. Maleko %T Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 20-29 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/ %G ru %F ISU_2011_11_3_a3
E. M. Maleko. Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 20-29. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a3/
[1] Dorodnitsyn A. A., Izbrannye nauchnye trudy, v 2 t., v. 1, VTs RAN, M., 1997, 396 pp.
[2] Verzhbitskii V. M., Chislennye metody (matematicheskii analiz i obyknovennye differentsialnye uravneniya), ucheb. posobie dlya vuzov, Vyssh. shk., M., 2001, 382 pp.
[3] Lizorkin P. I., Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR
[4] Smirnov V. I., Kurs vysshei matematiki, v 5 t., v. 2, Nauka, M., 1967, 656 pp.
[5] Stepanov V. V., Kurs differentsialnykh uravnenii, Gos. izd-vo TTL, M., 1953, 468 pp.