Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the task to determine the velocity field and temperature field inside the insulated ring of incompressible viscous fluid with two free boundaries in the non-classical model of hydrodynamics. The solution to the Navier–Stokes equations and heat equation obtained by numerical methods. Analysis of the results of numerical experiments reveal the effect of nondissipative viscosity on the temperature distribution inside the ring.
@article{ISU_2011_11_3_a11,
     author = {V. O. Bytev and E. A. Gerber},
     title = {Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/}
}
TY  - JOUR
AU  - V. O. Bytev
AU  - E. A. Gerber
TI  - Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 81
EP  - 86
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/
LA  - ru
ID  - ISU_2011_11_3_a11
ER  - 
%0 Journal Article
%A V. O. Bytev
%A E. A. Gerber
%T Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 81-86
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/
%G ru
%F ISU_2011_11_3_a11
V. O. Bytev; E. A. Gerber. Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 81-86. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/

[1] Andreev V. K., Bublik V. V., Bytev V. O., Simmetrii neklassicheskikh modelei gidrodinamiki, Novosibirsk, 2003, 352 pp.

[2] Ovsyannikov L. V., “Obschie uravneniya i primery”, Zadacha o neustanovivshemsya dvizhenii zhidkosti so svobodnoi granitsei, cb. rabot teor. otdela IG SO AN SSSR, Novosibirsk, 1967, 5–75

[3] Bytev V. O., “Neustanovivshiesya dvizheniya koltsa vyazkoi neszhimaemoi zhidkosti so svobodnymi granitsami”, PMTF, 1970, no. 3, 88–98 | MR

[4] Pukhnachev V. V., Neklassicheskie zadachi teorii pogranichnogo sloya, Novosibirsk, 1980 | MR

[5] Lavrenteva O. M., “Neustanovivsheesya dvizhenie vraschayuschegosya koltsa vyazkoi kapillyarnoi zhidkosti”, Dinamika zhidkosti so svobodnymi granitsami, Sb. nauch. tr., Dinamika sploshnoi sredy, 31, IG SO AN SSSR, Novosibirsk, 1978, 52–60 | MR

[6] Lavrenteva O. M., “Predelnye rezhimy dvizheniya vraschayuschegosya vyazkogo koltsa”, Dinamika neodnorodnoi zhidkosti, Sb. nauch. tr., Dinamika sploshnoi sredy, 44, IG SO AN SSSR, Novosibirsk, 1980, 15–34 | MR

[7] Bytev V. O., Gerber E. A., “Ob odnoi zadache s dvumya svobodnymi granitsami”, Sovremennye problemy matematiki i eë prikladnye aspekty, materialy Vseros. nauch.-prakt. konf., Perm, 2010, 100

[8] Bytev V. O., Gerber E. A., “Chislennoe modelirovanie dinamiki zhidkogo koltsa”, Naukoemkie informatsionnye tekhnologii, tr. XIV molodezhnoi nauch.-prakt. konf., Pereslavl-Zalesskii, 2010, 109–114

[9] Bytev V. O., “Building of Mathematical Models of continuum media on the basis of invariante principle”, Acta Appl. Math., 16 (1989), 117–142 | DOI | MR | Zbl

[10] Bytev V. O., Gerber E. A., “O vosstanovlenii tochnogo resheniya i o rasprostranenii temperatury v koltse zhidkosti”, Matematicheskoe i informatsionnoe modelirovanie, Sb. nauch. tr., 11, Tyumen, 2009, 50–57