Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 81-86

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the task to determine the velocity field and temperature field inside the insulated ring of incompressible viscous fluid with two free boundaries in the non-classical model of hydrodynamics. The solution to the Navier–Stokes equations and heat equation obtained by numerical methods. Analysis of the results of numerical experiments reveal the effect of nondissipative viscosity on the temperature distribution inside the ring.
@article{ISU_2011_11_3_a11,
     author = {V. O. Bytev and E. A. Gerber},
     title = {Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/}
}
TY  - JOUR
AU  - V. O. Bytev
AU  - E. A. Gerber
TI  - Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 81
EP  - 86
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/
LA  - ru
ID  - ISU_2011_11_3_a11
ER  - 
%0 Journal Article
%A V. O. Bytev
%A E. A. Gerber
%T Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 81-86
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/
%G ru
%F ISU_2011_11_3_a11
V. O. Bytev; E. A. Gerber. Temperature distribution inside the ring of liquid with two free borders in the nonclassical model of hydrodynamics. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 81-86. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a11/