Construction and stabilization program motions of nonautonomous hamiltonian systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 74-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider program motion of Hamiltonian system and solve the problem of construction asymptotically stability programm motion. The programm motion can be any function. Control is received in the method and the method of limiting functions and systems. In this case we use the Lyapunov's functions having constant signs derivatives. The following examples are considered: stabilization of program motions of homogeneous rod of variable length and stabilization of program motions of mathematical pendulum variable length in the rotation plane.
@article{ISU_2011_11_3_a10,
     author = {S. P. Bezglasnyi and E. V. Kurkina},
     title = {Construction and stabilization program motions of nonautonomous hamiltonian systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a10/}
}
TY  - JOUR
AU  - S. P. Bezglasnyi
AU  - E. V. Kurkina
TI  - Construction and stabilization program motions of nonautonomous hamiltonian systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 74
EP  - 80
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a10/
LA  - ru
ID  - ISU_2011_11_3_a10
ER  - 
%0 Journal Article
%A S. P. Bezglasnyi
%A E. V. Kurkina
%T Construction and stabilization program motions of nonautonomous hamiltonian systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 74-80
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a10/
%G ru
%F ISU_2011_11_3_a10
S. P. Bezglasnyi; E. V. Kurkina. Construction and stabilization program motions of nonautonomous hamiltonian systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 74-80. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a10/

[1] Letov A. M., Dinamika poleta i upravlenie, Nauka, M., 1969, 359 pp.

[2] Galiullin A. S., Mukhametzyanov I. A., Mukharlyamov R. G., Furasov V. D., Postroenie sistem programmnogo dvizheniya, Nauka, M., 1971, 352 pp. | MR | Zbl

[3] Zubov V. I., Problema ustoichivosti protsessov upravleniya, Sudostroenie, L., 1980, 375 pp. | MR | Zbl

[4] Afanasev V. N., Kolmanovskii V. B., Nosov V. R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vyssh. shk., M., 1989, 447 pp. | MR | Zbl

[5] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp. | MR | Zbl

[6] Artstein Z., “Topological dynamics of an ordinary equations”, J. Differ. Equat., 23 (1977), 216–223 | DOI | MR | Zbl

[7] Andreev A. S., “Ob ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 1984, no. 2, 40–45

[8] Bezglasnyi S. P., “The stabilization of equilibrium state of nonlinear hamiltonian systems”, Seminarberichte aus dem Fachberrich Mathematik. FernUnivetsität in Hagen., 71 (2001), 45–53

[9] Markeev A. P., Teoreticheskaya mekhanika, Fizmalit, M., 1990, 414 pp. | MR

[10] Bezglasnyi S. P., “The stabilization of program motions of controlled nonlinear mechanical systems”, Korean J. Comput. and Appl. Math., 14:1 (2004), 251–266 | DOI | MR