The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complexes of lines in hyperbolic type of biflag space introduced by the author are studied by the method of external Cartan forms. We prove that 5 non-special variants of complexes exist in mentioned space in zero order neighborhood. For every complex a first-order moving flag was drawn.
@article{ISU_2011_11_3_a1,
     author = {G. V. Kiotina},
     title = {The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {11--15},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/}
}
TY  - JOUR
AU  - G. V. Kiotina
TI  - The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 11
EP  - 15
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/
LA  - ru
ID  - ISU_2011_11_3_a1
ER  - 
%0 Journal Article
%A G. V. Kiotina
%T The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 11-15
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/
%G ru
%F ISU_2011_11_3_a1
G. V. Kiotina. The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 11-15. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/

[1] Kiotina G. V., “Gruppa dvizhenii obobschenno-galileeva prostranstva”, Vestn. Ryazan. GPU, 2004, 117–126

[2] Rozenfeld B. A., Zatsepina O. V., Stegantseva P. G., “Giperkompleksy pryamykh v evklidovom i neevklidovom prostranstvakh”, Izv. vuzov. Matematika, 1990, no. 3, 57–66 | MR | Zbl

[3] Kiotina G. V., “Kompleksy pryamykh v biflagovom prostranstve $\bar F^2_3$”, Trudy vtorykh Kolmogorovskikh chtenii, Yaroslavl, 2004, 338–344

[4] Kovantsov N. I., Teoriya kompleksov, Kiev, 1963, 292 pp. | MR

[5] Kiotina G. V., Zatsepina O. V., Romakina L. N., “Spetsialnye kompleksy pryamykh v prostranstvakh $\bar F^2_3$, $^1S_5$, $\bar B^h_3$”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, tez. dokl. mezhdunarod. konf., Saratov, 2008, 85–86