Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2011_11_3_a1, author = {G. V. Kiotina}, title = {The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {11--15}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/} }
TY - JOUR AU - G. V. Kiotina TI - The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 11 EP - 15 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/ LA - ru ID - ISU_2011_11_3_a1 ER -
%0 Journal Article %A G. V. Kiotina %T The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 11-15 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/ %G ru %F ISU_2011_11_3_a1
G. V. Kiotina. The classification of complexes of lines in zeroth order frame in $\bar F^2_3$ space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 11-15. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a1/
[1] Kiotina G. V., “Gruppa dvizhenii obobschenno-galileeva prostranstva”, Vestn. Ryazan. GPU, 2004, 117–126
[2] Rozenfeld B. A., Zatsepina O. V., Stegantseva P. G., “Giperkompleksy pryamykh v evklidovom i neevklidovom prostranstvakh”, Izv. vuzov. Matematika, 1990, no. 3, 57–66 | MR | Zbl
[3] Kiotina G. V., “Kompleksy pryamykh v biflagovom prostranstve $\bar F^2_3$”, Trudy vtorykh Kolmogorovskikh chtenii, Yaroslavl, 2004, 338–344
[4] Kovantsov N. I., Teoriya kompleksov, Kiev, 1963, 292 pp. | MR
[5] Kiotina G. V., Zatsepina O. V., Romakina L. N., “Spetsialnye kompleksy pryamykh v prostranstvakh $\bar F^2_3$, $^1S_5$, $\bar B^h_3$”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, tez. dokl. mezhdunarod. konf., Saratov, 2008, 85–86