Generalized cross-coupled type-III thermoelastic waves propagating via a~waveguide under sidewall heat interchange
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 59-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a study of cross-coupled type-III generalized thermoelastic waves propagation via a long cylindrical waveguide. The sidewall of the waveguide is assumed free from tractions and permeable to heat. The analysis is carried out in the framework of coupled generalized theory of GNIII-thermoelasticity consistent with the basic thermodynamic principles. The theory combines the both possible mechanisms of heat transfer: thermodiffusion and wave. Type-III generalized thermoelasticity includes classical thermoelasticity (GNI/CTE) and the theory of hyperbolic thermoelasticity (GNII) as limiting cases. The GNII-theory can be formulated as a field theory and differential field equations are of hyperbolic analytical type. Closed solution of the coupled GNIII-thermoelasticity equations satisfying the required boundary conditions on the surface of waveguide including convective heat interchanging condition has been obtained. The paper provides numerical analysis of frequency equation. A scheme of frequency equation roots localization is described and wavenumbers of the coupled thermoelastic waves of the first azimuthal order are computed.
@article{ISU_2011_11_1_a7,
     author = {V. A. Kovalev and Yu. N. Radayev and R. A. Revinsky},
     title = {Generalized cross-coupled {type-III} thermoelastic waves propagating via a~waveguide under sidewall heat interchange},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a7/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
AU  - R. A. Revinsky
TI  - Generalized cross-coupled type-III thermoelastic waves propagating via a~waveguide under sidewall heat interchange
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 59
EP  - 70
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a7/
LA  - ru
ID  - ISU_2011_11_1_a7
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%A R. A. Revinsky
%T Generalized cross-coupled type-III thermoelastic waves propagating via a~waveguide under sidewall heat interchange
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 59-70
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a7/
%G ru
%F ISU_2011_11_1_a7
V. A. Kovalev; Yu. N. Radayev; R. A. Revinsky. Generalized cross-coupled type-III thermoelastic waves propagating via a~waveguide under sidewall heat interchange. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a7/

[1] Maxwell J. C., “On the Dynamical Theory of Gases”, Phil. Trans. Royal Soc. London, 157 (1867), 49–88 | DOI

[2] Biot M. A., “Thermoelasticity and irreversible thermodynamics”, J. Appl. Phys., 127 (1956), 240–253 | DOI | MR

[3] McNelly T. F. et al., “Heat pulses in NaF: Onset of second sound”, Phys. Reviews, 24:3 (1970), 100–102

[4] Jackson H. E., Walker C. T., McNelly T. F., “Second sound in NaF”, Phys. Reviews, 25:1 (1970), 26–28

[5] Rogers S. J., “Tansport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals”, Phys. Reviews B, 3:4 (1971), 1440–1457 | DOI

[6] Pohl D. W., Irniger V., “Observation of second sound in NaF by means of light scattering”, Phys. Review Letters, 36:9 (1976), 480–483 | DOI

[7] Hardy R. J., Jaswal S. S., “Velocity of second sound in NaF”, Phys. Review B, 3:12 (1971), 4385–4387 | DOI

[8] Narayanamurti V., Dynes R. C., “Observation of second sound in Bismuth”, Phys. Reviews, 28 (1972), 1461–1464

[9] Lord H., Shulman Y., “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solid., 15 (1967), 299–309 | DOI | Zbl

[10] Green A. E., Lindsay K. A., “Thermoelasticity”, J. Elasticity, 2 (1972), 1–7 | DOI | Zbl

[11] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Thermal Stresses, 15 (1992), 253–264 | DOI | MR

[12] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[13] Puri P., Jordan P. M., “On the propagation of plane waves in type-III thermoelastic media”, Proceedings of the Royal Society of London A, 460 (2004), 3203–3221 | DOI | MR | Zbl

[14] Kovalev V. A., Radaev Yu. N., “Volnovye chisla ploskikh GNIII-termouprugikh voln i neravenstva, obespechivayuschie ikh normalnost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 46–53

[15] Dhaliwal R. S., Majumdar R. S., Jun W., “Thermoelastic waves in an infinite solid caused by a line heat source”, Intern. J. Math. and Math. Sci., 20:2 (1997), 323–334 | DOI | MR | Zbl

[16] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.

[17] Kovalev V. A., Radaev Yu. N., “Rasprostranenie svyazannykh GNIII-termouprugikh voln v dlinnom tsilindricheskom volnovode”, Vestn. ChGPU im. I. Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2010, no. 2(8), 207–255

[18] Kovalev V.A., Radaev Yu. N., Romanov A. E., “Prokhozhdenie teplovogo GNIII-volnovogo signala s vysokoi okruzhnoi garmonikoi cherez tsilindricheskii volnovod”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, sb. trudov mezhdunar. konf., posvyasch. 80-letiyu prof. D. D. Ivleva, Izd. tsentr Voronezh. gos. un-ta, Voronezh, 2010, 173–180

[19] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, Fizmatlit, M., 2009, 156 pp.

[20] Kovalev V. A., Radaev Yu. N., “Volnovye zadachi teorii polya i termomekhanika”, Matematicheskaya fizika i ee prilozheniya, materialy mezhdunar. konf., eds. chl.-kor. RAN I. V. Volovich, prof. Yu. N. Radaev, Kniga, Samara, 2010, 165–166