Solvability of boundary value problems for the Schrodinger equation with purely imaginary coefficient
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines regional problems for nonlinear Schrodinger equation when factor of the equation is the square-summable function that has a square-summable derivative. In this process, theorems of existence and uniqueness of the solution of the boundary value problems under consideration have been proved.
@article{ISU_2011_11_1_a4,
     author = {N. M. Makhmudov},
     title = {Solvability of boundary value problems for the {Schrodinger} equation with purely imaginary coefficient},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a4/}
}
TY  - JOUR
AU  - N. M. Makhmudov
TI  - Solvability of boundary value problems for the Schrodinger equation with purely imaginary coefficient
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 31
EP  - 38
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a4/
LA  - ru
ID  - ISU_2011_11_1_a4
ER  - 
%0 Journal Article
%A N. M. Makhmudov
%T Solvability of boundary value problems for the Schrodinger equation with purely imaginary coefficient
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 31-38
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a4/
%G ru
%F ISU_2011_11_1_a4
N. M. Makhmudov. Solvability of boundary value problems for the Schrodinger equation with purely imaginary coefficient. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a4/

[1] Bukkel V., Teoriya sverkhprovodimosti. Osnovy i prilozheniya, M., 1975, 361 pp.

[2] Vorontsov M. A., Shmalgauzen V. N., Printsipy adaptivnoi optiki, M., 1985, 336 pp.

[3] Iskenderov A. D., Yagubov G. Ya., “Variatsionnyi metod resheniya obratnoi zadachi ob opredelenii kvantomekhanicheskogo potentsiala”, Dokl. AN SSSR, 303:5 (1988), 1044–1048 | MR

[4] Yagubov G. Ya., Optimalnoe upravlenie koeffitsientom kvazilineinogo uravneniya Shredingera, dis. $\dots$ d-ra fiz.-mat. nauk, Kiev, 1994, 318 pp.

[5] Iskenderov A. D., Yagubov G. Ya., “Optimalnoe upravlenie nelineinymi kvantomekhanicheskimi sistemami”, Avtomatika i telemekhanika, 1989, no. 12, 27–38 | MR | Zbl

[6] Yagubov G. Ya., Musaeva M. A., “O variatsionnom metode resheniya mnogomernoi obratnoi zadachi dlya nelineinogo nestatsionarnogo uravneniya Shredingera”, Izv. AN. Az. SSR. Ser. Fiz.-tekh. i mat. nauki, 15:5–6 (1994), 58–61

[7] Baudouin L., Kavian O., Puel J. P., “Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control”, J. Differential Equations, 216 (2005), 188–222 | DOI | MR | Zbl

[8] Cances E. Le Bris C., Pilot M., “Controle optimal bilineare d'uno equation de Schrödinger”, C. R. Acad. Sci. Paris, 330:1 (2000), 567–571 | DOI | MR | Zbl

[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, M., 1982, 332 pp. | MR | Zbl

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, M., 1973, 408 pp. | MR

[11] Iskenderov A. D., “Opredelenie potentsiala v nestatsionarnom uravnenii Shredingera”, Problemy matematicheskogo modelirovaniya i optimalnogo upravleniya, sb. nauch. st., Baku, 2001, 6–36 | Zbl