Leray–Serra spectral sequence for tolerant quasifibering of tolerant ways
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 24-30
Cet article a éte moissonné depuis la source Math-Net.Ru
The article constructs Leray–Serra homological spectral sequence for tolerant quasifibering of tolerant ways and computes the two first members of this sequence.
@article{ISU_2011_11_1_a3,
author = {E. V. Korobchenko and S. I. Nebaluev},
title = {Leray{\textendash}Serra spectral sequence for tolerant quasifibering of tolerant ways},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {24--30},
year = {2011},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a3/}
}
TY - JOUR AU - E. V. Korobchenko AU - S. I. Nebaluev TI - Leray–Serra spectral sequence for tolerant quasifibering of tolerant ways JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 24 EP - 30 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a3/ LA - ru ID - ISU_2011_11_1_a3 ER -
%0 Journal Article %A E. V. Korobchenko %A S. I. Nebaluev %T Leray–Serra spectral sequence for tolerant quasifibering of tolerant ways %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 24-30 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a3/ %G ru %F ISU_2011_11_1_a3
E. V. Korobchenko; S. I. Nebaluev. Leray–Serra spectral sequence for tolerant quasifibering of tolerant ways. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 24-30. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a3/
[1] Zeeman E. C., “The topology of brain and visual perception”, The Topology of 3-Manifolds, N.Y., 1962 | MR
[2] Nebaluev S. I., Gomologicheskaya teoriya tolerantnykh prostranstv, Izd-vo Sarat. un-ta, Saratov, 2006
[3] Nebaluev S. I., Susin M. N., “Tolerantnoe rassloenie putei i teorema Gurevicha dlya tolerantnykh prostranstv, I”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:4 (2009), 41–44
[4] Nebaluev S. I., Korobchenko E. V., Susin M. N., “Punktirovannye tolerantnye kubicheskie singulyarnye gomologii”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, Mezhvuz. sb. nauch. tr., 6, Izd-vo Sarat. un-ta, Saratov, 2010
[5] Khu Sy-tszyan, Teoriya gomotopii, Mir, M., 1964