The feature of non-isothermal viscoelastic flows around sphere at obstruction condition
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 99-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical study is performed for study of the viscoelastic flow characteristics and heat transfer around sphere. The flow of liquid is described by equations of conservation of mass, momentum and thermal energy with rheological constitutive equation of Phan-Thien Tanner (PTT). This model represents generalized Maxwell type model with two additional parameters developed from kinetic theory of polymers. The nonlinear behaviour of fluid velocity behind body (“negative wake”) is observed. The paper numerically shows the essential influence of relaxation time and heating of sphere for viscoelastic structure of the flow in wake. The heat transfer exchange in non-isothermal flow around sphere with slip and noslip condition on walls has been investigated.
@article{ISU_2011_11_1_a13,
     author = {B. A. Snigerev and F. Kh. Tazyukov},
     title = {The feature of non-isothermal viscoelastic flows around sphere at obstruction condition},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a13/}
}
TY  - JOUR
AU  - B. A. Snigerev
AU  - F. Kh. Tazyukov
TI  - The feature of non-isothermal viscoelastic flows around sphere at obstruction condition
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 99
EP  - 104
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a13/
LA  - ru
ID  - ISU_2011_11_1_a13
ER  - 
%0 Journal Article
%A B. A. Snigerev
%A F. Kh. Tazyukov
%T The feature of non-isothermal viscoelastic flows around sphere at obstruction condition
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 99-104
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a13/
%G ru
%F ISU_2011_11_1_a13
B. A. Snigerev; F. Kh. Tazyukov. The feature of non-isothermal viscoelastic flows around sphere at obstruction condition. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 99-104. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a13/

[1] Hassager O., “Negative wake behind bubles in non-Newtonian liquids”, Nature, 279 (1979), 402–403 | DOI

[2] Arigo M. T., McKinley G. H., “An experimental investigation of negative wakes behind spheres settling in shear-thinning visoellastic fluids”, Rheol. Acta, 37 (1998), 307–327 | DOI

[3] Phan-Thien N., “A new constitutive equation derived from network theory”, J. Non-Newtonian Fluid. Mech., 2 (1979), 353–365 | DOI

[4] Bird R. B., Armstrong R. C., Hassager O., Dynamics of Polymeric Liquids, v. 1, Fluid Mechanics, 2nd ed., John Wiley and Sons, N.Y., 1987, 565 pp.

[5] Nazmeev Yu. G., Gidrodinamika i teploobmen zakruchennykh potokov reologicheski slozhnykh zhidkostei, Energoatomizdat, M., 1996, 304 pp.

[6] Konnor Dzh., Brebbia K., Metod konechnykh elementov v mekhanike zhidkosti, Sudostroenie, L., 1979, 264 pp.

[7] Aboubacar M. et al., “High-order finite volume schemes for viscoelastic flows”, J. Comput. Phys., 199 (2004), 16–40 | DOI | MR | Zbl

[8] Pisanetski O., Tekhnologiya razrezhennykh matrits, Mir, L., 1984, 344 pp.

[9] Zakharenkov S. M., “Realizatsiya granichnykh uslovii chastichnogo ili polnogo proskalzyvaniya pri reshenii uravnenii Nave–Stoksa”, Zhurn. vychisl. mat. i mat. fiz., 41:5 (2001), 796–806 | MR | Zbl

[10] Luo X. L., “Operator splitting algorithm for viscoelastic flow and numerical analysis for the flow around sphere in tube”, J. Non-Newtonian Fluid. Mech., 48 (1996), 57–75