Static bending and steady-state vibrations of thin cylindrical shells under local load
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spline collocation method is being used for solving static bending and steady-state vibrations ploblems for thin cylindrical shell under local loads. Maximum displacement values and first three resonance frequencies are given.
@article{ISU_2011_11_1_a12,
     author = {R. A. Safonov},
     title = {Static bending and steady-state vibrations of thin cylindrical shells under local load},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a12/}
}
TY  - JOUR
AU  - R. A. Safonov
TI  - Static bending and steady-state vibrations of thin cylindrical shells under local load
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 95
EP  - 99
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a12/
LA  - ru
ID  - ISU_2011_11_1_a12
ER  - 
%0 Journal Article
%A R. A. Safonov
%T Static bending and steady-state vibrations of thin cylindrical shells under local load
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 95-99
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a12/
%G ru
%F ISU_2011_11_1_a12
R. A. Safonov. Static bending and steady-state vibrations of thin cylindrical shells under local load. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a12/

[1] Ambartsumyan S. A., Teoriya anizotropnykh obolochek, ed. I. K. Snitko, Fizmatgiz, M., 1961, 384 pp.

[2] Grigorenko Ya. M., Kryukov N. N., “Reshenie zadach teorii plastin i obolochek s primeneniem splain-funktsii (obzor)”, Prikl. mekhanika, 31:6 (1995), 3–27 | MR | Zbl

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[4] Godunov S. K., “O chislennom reshenii kraevykh zadach dlya sistem obyknovennykh differentsialnykh uravnenii”, UMN, 16:3(99) (1961), 171–174 | MR | Zbl

[5] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh differentsialnykh uravnenii (variant metoda progonki)”, Zhurn. vychisl. mat. i mat. fiz., 1:3 (1961), 542–545 | MR | Zbl

[6] Vinogradov Yu. I., Vinogradov A. Yu., Gusev Yu. A., “Chislennyi metod perenosa kraevykh uslovii dlya zhestkikh differentsialnykh uravnenii stroitelnoi mekhaniki”, Mat. modelirovanie, 14:9 (2002), 3–8 | Zbl