Analytical solution of differential equations of circular spacecraft orbit orientation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal reorientation of spacecraft's orbit with a limited control, orthogonal to the plane of spacecraft orbit is being investigated. We have found an analytical solution of differential equations of circular spacecraft orbit orientation by control that is permanent on adjacent parts of the active spacecraft's motion.
@article{ISU_2011_11_1_a10,
     author = {I. A. Pankratov and Yu. N. Chelnokov},
     title = {Analytical solution of differential equations of circular spacecraft orbit orientation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/}
}
TY  - JOUR
AU  - I. A. Pankratov
AU  - Yu. N. Chelnokov
TI  - Analytical solution of differential equations of circular spacecraft orbit orientation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 84
EP  - 89
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/
LA  - ru
ID  - ISU_2011_11_1_a10
ER  - 
%0 Journal Article
%A I. A. Pankratov
%A Yu. N. Chelnokov
%T Analytical solution of differential equations of circular spacecraft orbit orientation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 84-89
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/
%G ru
%F ISU_2011_11_1_a10
I. A. Pankratov; Yu. N. Chelnokov. Analytical solution of differential equations of circular spacecraft orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 84-89. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/

[1] Chelnokov Yu. N., “Primenenie kvaternionov v zadachakh optimalnogo upravleniya dvizheniem tsentra mass kosmicheskogo apparata v nyutonovskom gravitatsionnom pole”, Kosmich. issledovaniya, 39:5 (2001), 502–517; 41:1 (2003), 92–107; 41:5 (2003), 488–502

[2] Nenakhov S. V., Chelnokov Yu. N., “Kvaternionnoe reshenie zadachi optimalnogo upravleniya orientatsiei orbity kosmicheskogo apparata”, Bortovye integrirovannye kompleksy i sovremennye problemy upravleniya, sb. tr. mezhdunar. konf., MAI, M., 1998, 59–60

[3] Sergeev D. A., Chelnokov Yu. N., “Optimalnoe upravlenie orientatsiei orbity kosmicheskogo apparata”, Problemy tochnoi mekhaniki i upravleniya, sb. nauch. tr. IPTMU RAN, Izd-vo SGTU, Saratov, 2002, 64–75

[4] Chelnokov Yu. N., “Optimalnaya pereorientatsiya orbity kosmicheskogo apparata posredstvom reaktivnoi tyagi, ortogonalnoi ploskosti orbity”, Matematika. Mekhanika, Sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2006, 231–234

[5] Chelnokov Yu. N., “Ob opredelenii orientatsii ob'ekta v parametrakh Rodriga–Gamiltona po ego uglovoi skorosti”, Izv. AN SSSR. Ser. Mekhanika tverdogo tela, 1977, no. 3, 11–20

[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 331 pp.