Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2011_11_1_a10, author = {I. A. Pankratov and Yu. N. Chelnokov}, title = {Analytical solution of differential equations of circular spacecraft orbit orientation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {84--89}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/} }
TY - JOUR AU - I. A. Pankratov AU - Yu. N. Chelnokov TI - Analytical solution of differential equations of circular spacecraft orbit orientation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 84 EP - 89 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/ LA - ru ID - ISU_2011_11_1_a10 ER -
%0 Journal Article %A I. A. Pankratov %A Yu. N. Chelnokov %T Analytical solution of differential equations of circular spacecraft orbit orientation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 84-89 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/ %G ru %F ISU_2011_11_1_a10
I. A. Pankratov; Yu. N. Chelnokov. Analytical solution of differential equations of circular spacecraft orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 84-89. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a10/
[1] Chelnokov Yu. N., “Primenenie kvaternionov v zadachakh optimalnogo upravleniya dvizheniem tsentra mass kosmicheskogo apparata v nyutonovskom gravitatsionnom pole”, Kosmich. issledovaniya, 39:5 (2001), 502–517; 41:1 (2003), 92–107; 41:5 (2003), 488–502
[2] Nenakhov S. V., Chelnokov Yu. N., “Kvaternionnoe reshenie zadachi optimalnogo upravleniya orientatsiei orbity kosmicheskogo apparata”, Bortovye integrirovannye kompleksy i sovremennye problemy upravleniya, sb. tr. mezhdunar. konf., MAI, M., 1998, 59–60
[3] Sergeev D. A., Chelnokov Yu. N., “Optimalnoe upravlenie orientatsiei orbity kosmicheskogo apparata”, Problemy tochnoi mekhaniki i upravleniya, sb. nauch. tr. IPTMU RAN, Izd-vo SGTU, Saratov, 2002, 64–75
[4] Chelnokov Yu. N., “Optimalnaya pereorientatsiya orbity kosmicheskogo apparata posredstvom reaktivnoi tyagi, ortogonalnoi ploskosti orbity”, Matematika. Mekhanika, Sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2006, 231–234
[5] Chelnokov Yu. N., “Ob opredelenii orientatsii ob'ekta v parametrakh Rodriga–Gamiltona po ego uglovoi skorosti”, Izv. AN SSSR. Ser. Mekhanika tverdogo tela, 1977, no. 3, 11–20
[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 331 pp.