Asymptotics around the degeneration spot of heat equation solution with strong degeneration
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with heat equation with strong degeneration. It is known that for such problems initial conditions are not stated at $t=0$ as there exists the only smooth solution of such equation. The paper investigates a class of uniqueness of the solution and studies solvability of the problem in spaces of continuous functions. An asymptotic representation of solution around the degeneration spot is built, i.e. the main part of the solution is defined at $t\to+0$ and residuals are estimated.
@article{ISU_2011_11_1_a1,
     author = {A. V. Glushko and A. D. Baev and D. S. Shumeeva},
     title = {Asymptotics around the degeneration spot of heat equation solution with strong degeneration},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/}
}
TY  - JOUR
AU  - A. V. Glushko
AU  - A. D. Baev
AU  - D. S. Shumeeva
TI  - Asymptotics around the degeneration spot of heat equation solution with strong degeneration
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 9
EP  - 19
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/
LA  - ru
ID  - ISU_2011_11_1_a1
ER  - 
%0 Journal Article
%A A. V. Glushko
%A A. D. Baev
%A D. S. Shumeeva
%T Asymptotics around the degeneration spot of heat equation solution with strong degeneration
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 9-19
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/
%G ru
%F ISU_2011_11_1_a1
A. V. Glushko; A. D. Baev; D. S. Shumeeva. Asymptotics around the degeneration spot of heat equation solution with strong degeneration. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/

[1] Glushko V. P., Savchenko Yu. B., “Vyrozhdayuschiesya ellipticheskie uravneniya vysokogo poryadka: prostranstva, operatory, granichnye zadachi”, Itogi nauki i tekhn. Ser. Mat. analiz, 23, 1985, 125–218 | MR | Zbl

[2] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 527 pp.