Asymptotics around the degeneration spot of heat equation solution with strong degeneration
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 9-19
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with heat equation with strong degeneration. It is known that for such problems initial conditions are not stated at $t=0$ as there exists the only smooth solution of such equation. The paper investigates a class of uniqueness of the solution and studies solvability of the problem in spaces of continuous functions. An asymptotic representation of solution around the degeneration spot is built, i.e. the main part of the solution is defined at $t\to+0$ and residuals are estimated.
@article{ISU_2011_11_1_a1,
author = {A. V. Glushko and A. D. Baev and D. S. Shumeeva},
title = {Asymptotics around the degeneration spot of heat equation solution with strong degeneration},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {9--19},
year = {2011},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/}
}
TY - JOUR AU - A. V. Glushko AU - A. D. Baev AU - D. S. Shumeeva TI - Asymptotics around the degeneration spot of heat equation solution with strong degeneration JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 9 EP - 19 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/ LA - ru ID - ISU_2011_11_1_a1 ER -
%0 Journal Article %A A. V. Glushko %A A. D. Baev %A D. S. Shumeeva %T Asymptotics around the degeneration spot of heat equation solution with strong degeneration %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 9-19 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/ %G ru %F ISU_2011_11_1_a1
A. V. Glushko; A. D. Baev; D. S. Shumeeva. Asymptotics around the degeneration spot of heat equation solution with strong degeneration. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a1/