An inverse problem for quasilinear elliptic equations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article examines incorrect inverse problems in the defining unknown factors in the quasilinear elliptic equation. Theorems of existence, uniqueness and stability have been proved. The consecutive approach method is used for the construction of the regulating algorithm for defining several factors.
@article{ISU_2011_11_1_a0,
     author = {R. A. Aliev},
     title = {An inverse problem for quasilinear elliptic equations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a0/}
}
TY  - JOUR
AU  - R. A. Aliev
TI  - An inverse problem for quasilinear elliptic equations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 3
EP  - 9
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a0/
LA  - ru
ID  - ISU_2011_11_1_a0
ER  - 
%0 Journal Article
%A R. A. Aliev
%T An inverse problem for quasilinear elliptic equations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 3-9
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a0/
%G ru
%F ISU_2011_11_1_a0
R. A. Aliev. An inverse problem for quasilinear elliptic equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a0/

[1] Iskenderov A. D., “Obratnaya zadacha ob opredelenii koeffitsientov kvazilineinogo ellipticheskogo uravneniya”, Izv. AN. Az.SSR, 1978, no. 2, 80–85 | MR | Zbl

[2] Klibanov M. V., “Edinstvennost v tselom obratnykh zadach dlya odnogo klassa differentsialnykh uravnenii”, Differentsialnye uravneniya, 20:11 (1984), 1947–1953 | MR | Zbl

[3] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Inostr. lit., M., 1957, 252 pp.