On one case of reducibility of the equations of motion of a~complex mechanical system
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 65-69

Voir la notice de l'article provenant de la source Math-Net.Ru

A mechanical system, consisting of a non-variable rigid body (a carrier) and a subsystem, the configuration and composition of which may vary with time (the motion of its elements with respect to the carrier is specified), is considered. The system moves in a uniform gravitational field around a fixed point of the carrier. Obtained are conditions for the existence of the integral, which is a generalization of the kinetic moment projection integral in the case of variable mass. The system is reduced to an autonomous type. Case of an algebraic integral of the Kovalevskaya type existence is distinguish.
@article{ISU_2010_10_3_a8,
     author = {V. Yu. Olshanskiy},
     title = {On one case of reducibility of the equations of motion of a~complex mechanical system},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a8/}
}
TY  - JOUR
AU  - V. Yu. Olshanskiy
TI  - On one case of reducibility of the equations of motion of a~complex mechanical system
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 65
EP  - 69
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a8/
LA  - ru
ID  - ISU_2010_10_3_a8
ER  - 
%0 Journal Article
%A V. Yu. Olshanskiy
%T On one case of reducibility of the equations of motion of a~complex mechanical system
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 65-69
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a8/
%G ru
%F ISU_2010_10_3_a8
V. Yu. Olshanskiy. On one case of reducibility of the equations of motion of a~complex mechanical system. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 65-69. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a8/