Modified spline collocation method in the problems of thin rectangular viscoelastic plate vibrations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 59-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical method for evaluation of critical frequencies during steady-state bending vibrations of viscoelastic plate is presented. The solution is based on applying modified spline collocation method for lowering the problem's dimension and numerical solving of the obtained problem via discrete orthogonalization method. The application of this approach with different boundary conditions is examined in detail.
@article{ISU_2010_10_3_a7,
     author = {P. F. Nedorezov and O. M. Romakina and R. A. Safonov},
     title = {Modified spline collocation method in the problems of thin rectangular viscoelastic plate vibrations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {59--64},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a7/}
}
TY  - JOUR
AU  - P. F. Nedorezov
AU  - O. M. Romakina
AU  - R. A. Safonov
TI  - Modified spline collocation method in the problems of thin rectangular viscoelastic plate vibrations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 59
EP  - 64
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a7/
LA  - ru
ID  - ISU_2010_10_3_a7
ER  - 
%0 Journal Article
%A P. F. Nedorezov
%A O. M. Romakina
%A R. A. Safonov
%T Modified spline collocation method in the problems of thin rectangular viscoelastic plate vibrations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 59-64
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a7/
%G ru
%F ISU_2010_10_3_a7
P. F. Nedorezov; O. M. Romakina; R. A. Safonov. Modified spline collocation method in the problems of thin rectangular viscoelastic plate vibrations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 59-64. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a7/