On wavenumbers of plane harmonic type~III thermoelastic waves
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 46-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present study is devoted to propagation of plane harmonic GNIII-thermoelastic waves by the coupled system of linear equations of motion and heat transport based on the Green Naghdi theory of thermoelasticity. Analytical findings and exact solutions are primarily related to complex wavenumbers, phase velocities and attenuation coefficients of the plane GNIII-thermoelastic waves. Complete analysis of all analytical branches of the wavenumbers is given. Constitutive inequlities and frequency restrictions which provide a normal behaviour of the plane GNIII-thermoelastic waves are obtained. Limiting cases, including those corresponding to GNI/CTE (the classical theory) and GNII (hyperbolic, thermal energy conserving theory) thermoelasticity, are noted. The paper presents an in-depth analysis of plane thermoelastic waves in the context of GNI, II, III.
@article{ISU_2010_10_3_a5,
     author = {V. A. Kovalev and Yu. N. Radaev},
     title = {On wavenumbers of plane harmonic {type~III} thermoelastic waves},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {46--53},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a5/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radaev
TI  - On wavenumbers of plane harmonic type~III thermoelastic waves
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 46
EP  - 53
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a5/
LA  - ru
ID  - ISU_2010_10_3_a5
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radaev
%T On wavenumbers of plane harmonic type~III thermoelastic waves
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 46-53
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a5/
%G ru
%F ISU_2010_10_3_a5
V. A. Kovalev; Yu. N. Radaev. On wavenumbers of plane harmonic type~III thermoelastic waves. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 46-53. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a5/

[1] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Therm. Stress, 15 (1992), 253–264 | DOI | MR

[2] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[3] Kalpakides V. K., Maugin G. A., “Canonical formulation and conservation laws of thermoelasticity without dissipation”, Reports in Mathematical Physics, 53, 2004, 371–391 | DOI | MR | Zbl

[4] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, Fizmatlit, M., 2009, 156 pp.

[5] Radaev Yu. N., Semenov D. A., “Garmonicheskie svyazannye CTE-termouprugie volny v svobodnom tsilindricheskom volnovode”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 8:1(67) (2008), 411–459

[6] Kovalev V. A., Radaev Yu. N., Semenov D. A., “Svyazannye dinamicheskie zadachi giperbolicheskoi termouprugosti”, III sessiya Nauchnogo soveta RAN po mekhanike deformiruemogo tverdogo tela, Tez. dokl. Vseros. konf., ed. L. Yu. Kossovich, Izd-vo Sarat. un-ta, Saratov, 2009, 25

[7] Kovalev V. A., Radaev Yu. N., Semenov D. A., “Svyazannye dinamicheskie zadachi giperbolicheskoi termouprugosti”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 9:4(2) (2009), 94–127 | MR

[8] Brekhovskikh L. M., Goncharov V. V., Vvedenie v mekhaniku sploshnykh sred (v prilozhenii k teorii voln), Nauka, M., 1982, 336 pp.