Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem is studied for Sturm–Liouville operators on arbitrary compact graphs with standard matching conditions in internal vertices. A uniqueness theorem of recovering operator's coefficients from spectra is proved.
@article{ISU_2010_10_3_a3,
     author = {V. A. Yurko},
     title = {Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a3/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 33
EP  - 38
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a3/
LA  - ru
ID  - ISU_2010_10_3_a3
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 33-38
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a3/
%G ru
%F ISU_2010_10_3_a3
V. A. Yurko. Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 33-38. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a3/

[1] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[2] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl

[3] Brown B. M., Weikard R., “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[4] Freiling G., Yurko V. A, “Inverse spectral problems for Sturm–Liouville operators on noncompact trees”, Results in Mathematics, 50 (2007), 195–212 | DOI | MR

[5] Yurko V. A., “Recovering differential pencils on compact graphs”, J. Diff. Equations, 244 (2008), 431–443 | DOI | MR | Zbl

[6] Yurko V. A., “Obratnye zadachi dlya differentsialnykh operatorov proizvolnykh poryadkov na derevyakh”, Mat. zametki, 83:1 (2008), 139–152 | DOI | MR | Zbl

[7] Yurko V. A., “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov na nekompaktnykh prostranstvennykh setyakh”, Differentsialnye uravneniya, 44:12 (2008), 1658–1666 | MR

[8] Yurko V. A., “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008 | DOI | MR | Zbl

[9] Yurko V. A., “Ob obratnoi spektralnoi zadache dlya differentsialnykh operatorov na grafe-ezhe”, Dokl. RAN, 425:4 (2009), 466–470 | MR | Zbl

[10] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 331 pp. | MR

[11] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984, 240 pp. | MR | Zbl

[12] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and their Applications, NOVA Science Publishers, N.Y., 2001, 305 pp. | MR | Zbl

[13] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 303 pp. | MR | Zbl

[14] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, 28, Amer. Math. Soc., Providence, R.I., 1988, 275 pp. | DOI | MR | Zbl

[15] Yurko V. A., Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, Amsterdam, 2000, 253 pp. | MR | Zbl

[16] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007, 384 pp. | Zbl

[17] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR | Zbl

[18] Bellmann R., Cooke K., Differential-difference Equations, Academic Press, N.Y., 1963, 548 pp. | MR

[19] Conway J. B., Functions of One Complex Variable, 2nd ed., Springer-Verlag, N.Y., 1995, 445 pp. | MR | Zbl