On analogue of Jordan--Dirichlet theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of Jordan–Dirichlet theorem is established of convergence of the expansions in eigen functions of the operator $Ly=\alpha y'(x)-y'(1-x)$ with the boundary condition $U(y)=ay(0)+by(1)-(y,\varphi)=0$.
@article{ISU_2010_10_3_a2,
     author = {V. A. Khalova},
     title = {On analogue of {Jordan--Dirichlet} theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/}
}
TY  - JOUR
AU  - V. A. Khalova
TI  - On analogue of Jordan--Dirichlet theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 26
EP  - 32
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/
LA  - ru
ID  - ISU_2010_10_3_a2
ER  - 
%0 Journal Article
%A V. A. Khalova
%T On analogue of Jordan--Dirichlet theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 26-32
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/
%G ru
%F ISU_2010_10_3_a2
V. A. Khalova. On analogue of Jordan--Dirichlet theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 26-32. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/