@article{ISU_2010_10_3_a2,
author = {V. A. Khalova},
title = {On analogue of {Jordan{\textendash}Dirichlet} theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {26--32},
year = {2010},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/}
}
TY - JOUR AU - V. A. Khalova TI - On analogue of Jordan–Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 26 EP - 32 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/ LA - ru ID - ISU_2010_10_3_a2 ER -
%0 Journal Article %A V. A. Khalova %T On analogue of Jordan–Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2010 %P 26-32 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/ %G ru %F ISU_2010_10_3_a2
V. A. Khalova. On analogue of Jordan–Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 26-32. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a2/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[2] Molodenkov V. A., Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi dlya operatora differentsirovaniya”, Differentsialnye uravneniya i vychislitelnaya matematika, 1, Izd-vo Sarat. un-ta, Saratov, 1972, 17–26 | MR
[3] Khromov A. P., “Ob analoge teoremy Zhordana–Dirikhle dlya razlozhenii po sobstvennym funktsiyam differentsialno-raznostnogo operatora s integralnym granichnym usloviem”, Dokl. RAEN (Povolzhskoe mezhregionalnoe otdelenie), 2004, no. 4, 80–87
[4] Khalova V. A., Konechnomernye vozmuscheniya integralnykh operatorov s yadrami, imeyuschimi skachki proizvodnykh na diagonalyakh, Dis. kand. fiz.-mat. nauk, Saratov, 2006, 123 pp.
[5] Khromov A. P., “Teoremy ravnoskhodimosti dlya integrodifferentsialnykh i integralnykh operatorov”, Mat. sbornik, 114(156):3 (1981), 378–405 | MR | Zbl