Finite closed 3(4)-loops of extended hyperbolic plane
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 14-26
Cet article a éte moissonné depuis la source Math-Net.Ru
This article considers finite closed $n$-loops of the extended hyperbolic plane $H^2$. The paper deals with topological and metric properties of the finite closed 3(4)-loops. Pasha statement analogues have been also obtained. We proved the existence of two types 4-loops and convexity of the plain 4-loop.
@article{ISU_2010_10_3_a1,
author = {L. N. Romakina},
title = {Finite closed 3(4)-loops of extended hyperbolic plane},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {14--26},
year = {2010},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a1/}
}
L. N. Romakina. Finite closed 3(4)-loops of extended hyperbolic plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 14-26. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a1/
[1] Rozenfeld B. A., Zamakhovskii M. P., Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2003, 560 pp. | MR
[2] Romakina L. N., Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Nauchnaya kniga, Saratov, 2008, 279 pp.