Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of the basic intense-deformed condition of the vertical mountain development, considering elastic-viscous-plastic properties of a file, and also porous structure of a material is constructed. Within the limits of the exact three-dimensional stability equations stability of the basic condition of vertical development in files of rocks with the compressed time is investigated. The estimation of influence on size of critical pressure of parametres of hills is given.
@article{ISU_2010_10_2_a7,
     author = {D. V. Gotsev and A. N. Stasjuk},
     title = {Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a7/}
}
TY  - JOUR
AU  - D. V. Gotsev
AU  - A. N. Stasjuk
TI  - Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 59
EP  - 65
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a7/
LA  - ru
ID  - ISU_2010_10_2_a7
ER  - 
%0 Journal Article
%A D. V. Gotsev
%A A. N. Stasjuk
%T Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 59-65
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a7/
%G ru
%F ISU_2010_10_2_a7
D. V. Gotsev; A. N. Stasjuk. Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 59-65. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a7/

[1] L. V. Ershov, “O proyavlenii gornogo davleniya v gorizontalnykh vyrabotkakh”, Dokl. AN SSSR, 145:2 (1962), 298–300 | Zbl

[2] D. V. Gotsev, A. N. Sporykhin, “Lokalnaya neustoichivost gorizontalnykh vyrabotok s mnogosloinoi krepyu v uprugo-plasticheskikh massivakh”, Izv. RAN. MTT, 2004, no. 1, 158–166

[3] D. V. Gotsev, I. A. Enenko, A. N. Sporykhin, “Lokalnaya neustoichivost gorizontalnykh vyrabotok mnogougolnoi formy v uprugovyazko-plasticheskikh massivakh”, SO RAN. PMTF, 46:2 (2005), 141–150 | Zbl

[4] D. V. Gotsev, I. A. Enenko, A. N. Sporykhin, “Lokalnaya neustoichivost gorizontalnykh vyrabotok ellipticheskoi formy v uprugovyazko-plasticheskikh massivakh”, Izv. RAN. MTT, 2007, no. 2, 183–192

[5] A. N. Sporykhin, A. I. Shashkin, Ustoichivost ravnovesiya prostranstvennykh tel i zadachi mekhaniki gornykh porod, Fizmatlit, M., 2004, 232 pp.

[6] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[7] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001, 701 pp.

[8] N. A. Tsytovich, Mekhanika gruntov, Vysshaya shkola, M., 1983, 320 pp.

[9] A. N. Guz, Osnovy teorii ustoichivosti gornykh vyrabotok, Nauk. dumka, Kiev, 1977, 204 pp.

[10] O. V. Sadovskaya, V. M. Sadovskii, “Modeli reologicheski slozhnykh sred, po-raznomu soprotivlyayuschikhsya rastyazheniyu i szhatiyu”, Matematicheskie modeli i metody mekhaniki sploshnykh sred, Sb. nauch. tr. k 60-letiyu A. A. Burenina, IAPU DVO RAN, Vladivostok, 2007, 224–238