Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 50-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The flaw is considered as a physical slit, and a material lying on continuation of a slit, shapes an interaction stratum between its coast sides. The given approach, unlike the concept of a mathematical slit, allows to establish laws of change of voltages and strains in deadlock field. It gives the chance to specify the values of exterior loadings corresponding to transition of a stratum in a plastic state. On the bases of a postulate on the linear distribution law of a field of travels on a thickness of a stratum the system of the integro-differential equations concerning travels of its boundaries is gained. The variant of the numerical solution of a task in view is viewed, comparison of effects for a special case with the known asymptotic solution is given.
@article{ISU_2010_10_2_a6,
     author = {V. V. Glagolev and L. V. Glagolev and A. A. Markin},
     title = {Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {50--58},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a6/}
}
TY  - JOUR
AU  - V. V. Glagolev
AU  - L. V. Glagolev
AU  - A. A. Markin
TI  - Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 50
EP  - 58
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a6/
LA  - ru
ID  - ISU_2010_10_2_a6
ER  - 
%0 Journal Article
%A V. V. Glagolev
%A L. V. Glagolev
%A A. A. Markin
%T Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 50-58
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a6/
%G ru
%F ISU_2010_10_2_a6
V. V. Glagolev; L. V. Glagolev; A. A. Markin. Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 50-58. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a6/

[1] G. P. Cherepanov, Mekhanika khrupkogo razrusheniya, Nauka, M., 1974, 640 pp. | Zbl

[2] V. V. Panasyuk, Mekhanika kvazikhrupkogo razrusheniya materialov, Nauk. dumka, Kiev, 1991, 416 pp. | Zbl

[3] K. F. Chernykh, Vvedenie v fizicheski i geometricheski nelineinuyu teoriyu treschin, Nauka, M., 1996, 288 pp. | MR | Zbl

[4] D. S. Dugdale, “Yielding of steel sheets containing slits”, J. Mech. and Phys. Solids, 8:2 (1960), 100–108 | DOI

[5] M. Ya. Leonov, V. V. Panasyuk, “Razvitie melchaishikh treschin v tverdom tele”, Prikladnaya mekhanika, 5:4 (1959), 391–401 | MR

[6] G. V. Klevtsov, L. R. Botvina, “Mikro- i makrozona plasticheskoi deformatsii kak kriterii predelnogo sostoyaniya materiala pri razrushenii”, Problemy prochnosti, 1984, no. 4, 24–28

[7] V. V. Novozhilov, O. V. Rybakina, “O perspektivakh postroeniya kriteriya prochnosti pri slozhnom nagruzhenii”, Prochnost pri malom chisle tsiklov nagruzheniya, Nauka, M., 1969, 71–80

[8] F. Makklintok, “Plasticheskie aspekty razrusheniya”, Razrushenie, v. 3, Mir, M., 1975, 67–262

[9] V. V. Glagolev, A. A. Markin, T. A. Mertsalova, “Diskretno-kontinualnaya model protsessa simmetrichnogo razdeleniya”, Prikladnaya mekhanika i tekhnicheskaya fizika, 50:1 (2009), 134–140 | Zbl

[10] V. M. Entov, R. L. Salganik, “K modeli khrupkogo razrusheniya Prandtlya”, Izv. AN SSSR. Mekhanika tverdogo tela, 1968, no. 6, 87–99

[11] V. V. Glagolev, A. A. Markin, “Opredelenie termomekhanicheskikh kharakteristik protsessa razdeleniya”, Izv. RAN. Mekhanika tverdogo tela, 2007, no. 6, 101–112

[12] V. V. Glagolev, A. A. Markin, “Otsenka tolschiny sloya vzaimodeistviya kak universalnogo parametra materiala”, Izv. RAN. Mekhanika tverdogo tela, 2006, no. 5, 194–203

[13] A. I. Lure, Teoriya uprugosti, Nauka, M., 1970, 939 pp. | Zbl

[14] V. V. Novozhilov, “O neobkhodimom i dostatochnom kriterii khrupkoi prochnosti”, PMM, 1969, no. 2, 212–222

[15] A. A. Ilyushin, Plastichnost. Osnovy obschei matematicheskoi teorii, Izd-vo AN SSSR, M., 1963, 272 pp.

[16] V. P. Degtyarev, Deformatsii i razrushenie v vysokonapryazhennykh konstruktsiyakh, Mashinostroenie, M., 1987, 105 pp.

[17] N. A. Makhutov, Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost, Mashinostroenie, M., 1981, 270 pp.

[18] K. Weighard, “Uber Spalter und Zerressen elastischer Korper”, Zeitsehr. Fur Math. Und Phys., 55:1–2 (1907), 60–103