Symmetry axes of planar polynomial differential systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 41-49
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of $N$-type axis of symmetry is introduced. It is proved that the vector field defined by system of the differential equations with $n$-order polynomials in a right hand, cannot have even number of axes of symmetry $N$-type at $n=2m$, $m\in N$. For $n=2,3$ full research of the given system on $N$-symmetry is carried out. Depending on the number of axes of $N$-type symmetry special forms of presenting of square and cubic systems,which allowto simplify qualitative research of such systems, are discovered.
@article{ISU_2010_10_2_a5,
author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho},
title = {Symmetry axes of planar polynomial differential systems},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {41--49},
year = {2010},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/}
}
TY - JOUR AU - V. B. Tlyachev AU - A. D. Ushkho AU - D. S. Ushkho TI - Symmetry axes of planar polynomial differential systems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 41 EP - 49 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/ LA - ru ID - ISU_2010_10_2_a5 ER -
%0 Journal Article %A V. B. Tlyachev %A A. D. Ushkho %A D. S. Ushkho %T Symmetry axes of planar polynomial differential systems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2010 %P 41-49 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/ %G ru %F ISU_2010_10_2_a5
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. Symmetry axes of planar polynomial differential systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 41-49. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/
[1] K. S. Sibirskii, “Printsip simmetrii i problema tsentra”, Uchen. zapiski Kishinev. un-ta, 17 (1955), 27–34 | MR
[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl
[3] K. S. Sibirskii, I. I. Pleshkan, “Usloviya simmetrii polya napravlenii nekotorogo differentsialnogo uravneniya”, Uchen. zapiski Kishinev. un-ta, 29 (1957), 11–14
[4] K. S. Sibirskii, “Tsentry s simmetriei polya napravlenii differentsialnogo uravneniya”, Izv. AN Mold. SSR, 1963, no. 1, 79–83 | MR