Symmetry axes of planar polynomial differential systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $N$-type axis of symmetry is introduced. It is proved that the vector field defined by system of the differential equations with $n$-order polynomials in a right hand, cannot have even number of axes of symmetry $N$-type at $n=2m$, $m\in N$. For $n=2,3$ full research of the given system on $N$-symmetry is carried out. Depending on the number of axes of $N$-type symmetry special forms of presenting of square and cubic systems,which allowto simplify qualitative research of such systems, are discovered.
@article{ISU_2010_10_2_a5,
     author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho},
     title = {Symmetry axes of planar polynomial differential systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/}
}
TY  - JOUR
AU  - V. B. Tlyachev
AU  - A. D. Ushkho
AU  - D. S. Ushkho
TI  - Symmetry axes of planar polynomial differential systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 41
EP  - 49
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/
LA  - ru
ID  - ISU_2010_10_2_a5
ER  - 
%0 Journal Article
%A V. B. Tlyachev
%A A. D. Ushkho
%A D. S. Ushkho
%T Symmetry axes of planar polynomial differential systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 41-49
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/
%G ru
%F ISU_2010_10_2_a5
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. Symmetry axes of planar polynomial differential systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 41-49. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a5/

[1] K. S. Sibirskii, “Printsip simmetrii i problema tsentra”, Uchen. zapiski Kishinev. un-ta, 17 (1955), 27–34 | MR

[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[3] K. S. Sibirskii, I. I. Pleshkan, “Usloviya simmetrii polya napravlenii nekotorogo differentsialnogo uravneniya”, Uchen. zapiski Kishinev. un-ta, 29 (1957), 11–14

[4] K. S. Sibirskii, “Tsentry s simmetriei polya napravlenii differentsialnogo uravneniya”, Izv. AN Mold. SSR, 1963, no. 1, 79–83 | MR