Аbout some boundary problems in the semispace for a~class of pseudo-differential equations with degeneracy
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary problems in the halfspace for one class of the pseudo-differential equations are considered. The coercetive a priori estimations and theorems of the existence of solutions for these problems are established.
@article{ISU_2010_10_2_a4,
     author = {P. V. Sadchikov and A. D. Baev},
     title = {{\CYRA}bout some boundary problems in the semispace for a~class of pseudo-differential equations with degeneracy},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a4/}
}
TY  - JOUR
AU  - P. V. Sadchikov
AU  - A. D. Baev
TI  - Аbout some boundary problems in the semispace for a~class of pseudo-differential equations with degeneracy
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 34
EP  - 41
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a4/
LA  - ru
ID  - ISU_2010_10_2_a4
ER  - 
%0 Journal Article
%A P. V. Sadchikov
%A A. D. Baev
%T Аbout some boundary problems in the semispace for a~class of pseudo-differential equations with degeneracy
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 34-41
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a4/
%G ru
%F ISU_2010_10_2_a4
P. V. Sadchikov; A. D. Baev. Аbout some boundary problems in the semispace for a~class of pseudo-differential equations with degeneracy. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 34-41. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a4/

[1] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN, 77:2 (1951), 181–183

[2] O. A. Oleinik, “Ob uravneniyakh ellipticheskogo tipa, vyrozhdayuschikhsya na granitse oblasti”, Dokl. AN, 87:6 (1952), 885–887 | MR

[3] M. M. Smirnov, Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[4] V. A. Rukavishnikov, A. G. Ereklintsev, “O koertsitivnosti $R_\nu$-obobschennogo resheniya pervoi kraevoi zadachi s soglasovannym vyrozhdeniem iskhodnykh dannykh”, Differentsialnye uravneniya, 41:12 (2005), 1680–1689 | MR | Zbl

[5] S. N. Antontsev, S. I. Shmarev, “O lokalizatsii reshenii ellipticheskikh uravnenii s neodnorodnym anizotropnym vyrozhdeniem”, Sib. mat. zhurn., 46:5 (2005), 963–984 | MR | Zbl

[6] M. I. Vishik, V. V. Grushin, “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Mat. sb., 80(112):4 (1969), 455–491 | Zbl

[7] V. P. Glushko, “Teoremy razreshimosti kraevykh zadach dlya odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. seminara akad. S. L. Soboleva, v. 2, Novosibirsk, 1978, 49–68 | MR | Zbl

[8] A. D. Baev, “Vyrozhdayuschiesya ellipticheskie uravneniya vysokogo poryadka i svyazannye s nimi psevdodifferentsialnye operatory”, Dokl. AN, 265:5 (1982), 1044–1046 | MR | Zbl

[9] A. D. Baev, “Ob obschikh kraevykh zadachakh v poluprostranstve dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. AN, 422:6 (2008), 727–728 | MR | Zbl

[10] A. D. Baev, Kachestvennye metody teorii kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii, Izd-vo Voronezh. gos. un-ta, Voronezh, 2008, 240 pp.