On multiple completeness of the root functions for a~class of the pencils of differential operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 24-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A polinomial pencil of ordinary differential operators of $n$-th order generated by a homogeneous differential expression with constant coefficients and by two-point boundary conditions of a special structure with $l$ conditions in zero only ($1\le l\le n-1$) is considered in the space $L_2[0,1]$. The case is studied, when the roots of the characteristic equation lie on a ray coming fromthe origin. A sufficient condition of $m$-fold completeness of the system of root functions for $m\le n-l$ in the space $L_2[0,1]$ is found. An accuracy of obtained result is shown.
@article{ISU_2010_10_2_a3,
     author = {V. S. Rykhlov},
     title = {On multiple completeness of the root functions for a~class of the pencils of differential operators},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a3/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - On multiple completeness of the root functions for a~class of the pencils of differential operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 24
EP  - 34
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a3/
LA  - ru
ID  - ISU_2010_10_2_a3
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T On multiple completeness of the root functions for a~class of the pencils of differential operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 24-34
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a3/
%G ru
%F ISU_2010_10_2_a3
V. S. Rykhlov. On multiple completeness of the root functions for a~class of the pencils of differential operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 24-34. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a3/