Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal with weight $(1-x_j)^\alpha(1+x_j)^\beta\Delta t_j$ on any finite set of $N$ points from segment $[-1,1]$ are investigated. Namely an asymptotic formula is proved in which asymptotic behaviour of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behaviour of the Jacobi polynomials.
@article{ISU_2010_10_2_a1,
     author = {A. A. Nurmagomedov},
     title = {Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the {\cyrs}ase of integers $\alpha$, and $\beta$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 10
EP  - 19
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/
LA  - ru
ID  - ISU_2010_10_2_a1
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 10-19
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/
%G ru
%F ISU_2010_10_2_a1
A. A. Nurmagomedov. Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 10-19. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/

[1] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, DNTs, Makhachkala, 2004, 276 pp.

[2] I. K. Daugavet, C. Z. Rafalson, “O nekotorykh neravenstvakh dlya algebraicheskikh mnogochlenov”, Vestn. Leningrad. un-ta, 1974, no. 19, 18–24 | MR | Zbl

[3] A. A. Nurmagomedov, “Ob asimptotike mnogochlenov, ortogonalnykh na proizvolnykh setkakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 8:1 (2008), 25–31

[4] A. A. Nurmagomedov, “Asimptotika mnogochlenov $\hat p_n^{\alpha,\beta}(t)$, ortogonalnykh na proizvolnykh setkakh”, Issledovaniya po differentsialnym uravneniyam i matematicheskomu modelirovaniyu, Sb. dokl. VI Mezhdunar. konf. “Poryadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniya”, Vladikavkaz, 2008, 200–211

[5] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.