@article{ISU_2010_10_2_a1,
author = {A. A. Nurmagomedov},
title = {Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the {\cyrs}ase of integers $\alpha$, and $\beta$},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {10--19},
year = {2010},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/}
}
TY - JOUR
AU - A. A. Nurmagomedov
TI - Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$
JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY - 2010
SP - 10
EP - 19
VL - 10
IS - 2
UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/
LA - ru
ID - ISU_2010_10_2_a1
ER -
%0 Journal Article
%A A. A. Nurmagomedov
%T Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 10-19
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/
%G ru
%F ISU_2010_10_2_a1
A. A. Nurmagomedov. Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the сase of integers $\alpha$, and $\beta$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 2, pp. 10-19. http://geodesic.mathdoc.fr/item/ISU_2010_10_2_a1/
[1] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, DNTs, Makhachkala, 2004, 276 pp.
[2] I. K. Daugavet, C. Z. Rafalson, “O nekotorykh neravenstvakh dlya algebraicheskikh mnogochlenov”, Vestn. Leningrad. un-ta, 1974, no. 19, 18–24 | MR | Zbl
[3] A. A. Nurmagomedov, “Ob asimptotike mnogochlenov, ortogonalnykh na proizvolnykh setkakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 8:1 (2008), 25–31
[4] A. A. Nurmagomedov, “Asimptotika mnogochlenov $\hat p_n^{\alpha,\beta}(t)$, ortogonalnykh na proizvolnykh setkakh”, Issledovaniya po differentsialnym uravneniyam i matematicheskomu modelirovaniyu, Sb. dokl. VI Mezhdunar. konf. “Poryadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniya”, Vladikavkaz, 2008, 200–211
[5] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.