The M. A. Lavrentiev inverse problem on mapping of half-plane onto polygon with infinite set of vertices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 23-31
Cet article a éte moissonné depuis la source Math-Net.Ru
The authors consider a generalization of the M. A. Lavrentiev inverse problem on a conformal mapping of half-plane onto interiority of a polygon for the case where the set of vertices of this polygon is infinite. We assume that the inner angles at unknown vertices and the image of the vertices under the conformal mapping on the real line are given. Under certain restrictions on values of the angles and on the sequence of points of the real line that are preimages of the vertices the formula for such a mapping is obtained.
@article{ISU_2010_10_1_a4,
author = {R. B. Salimov and P. L. Shabalin},
title = {The {M.} {A.~Lavrentiev} inverse problem on mapping of half-plane onto polygon with infinite set of vertices},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {23--31},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a4/}
}
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - The M. A. Lavrentiev inverse problem on mapping of half-plane onto polygon with infinite set of vertices JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 23 EP - 31 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a4/ LA - ru ID - ISU_2010_10_1_a4 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T The M. A. Lavrentiev inverse problem on mapping of half-plane onto polygon with infinite set of vertices %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2010 %P 23-31 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a4/ %G ru %F ISU_2010_10_1_a4
R. B. Salimov; P. L. Shabalin. The M. A. Lavrentiev inverse problem on mapping of half-plane onto polygon with infinite set of vertices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a4/
[1] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR
[2] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazan. mat. ob-va, Kazan, 2005, 298 pp.
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[4] Salimov R. B., Shabalin P. L., “Otobrazhenie poluploskosti na mnogougolnik s beskonechnym chislom vershin”, Izv. vuzov. Matematika, 2009, no. 10, 76–80 | MR | Zbl