Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2010_10_1_a3, author = {E. M. Maleko}, title = {The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {18--23}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/} }
TY - JOUR AU - E. M. Maleko TI - The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 18 EP - 23 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/ LA - ru ID - ISU_2010_10_1_a3 ER -
%0 Journal Article %A E. M. Maleko %T The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2010 %P 18-23 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/ %G ru %F ISU_2010_10_1_a3
E. M. Maleko. The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/
[1] Dorodnitsyn A. A., Izbrannye nauchnye trudy: V 2 t., v. 1, M., 1997, 396 pp.
[2] Maleko E. M., Koroleva V. V., “O postroenii sledov “podkhodyaschikh rezolvent” stepenei vozmuschennogo operatora”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezh. vesennei mat. shkoly “Pontryaginskie chteniya – XV”, Voronezh, 2004, 141
[3] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma–Liuvillya”, Dokl. AN, 369:1 (1999), 16–18 | MR
[4] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., Popov A. Yu., “Korrektnost metoda A. A. Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differentsialnye uravneniya, 38:4 (2002), 471–476 | MR | Zbl
[5] Sadovnichii V. A., Teoriya operatorov, 2-e izd., M., 1986, 386 pp. | MR
[6] Kurosh A. G., Kurs vysshei algebry, M., 1983, 411 pp. | Zbl