The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a discrete self-adjoint operator $T$ acts in a separable Hilbert space and have the kernel resolvent, and eigenvalues and eigenfunctions of the operator $T$ be known. In the paper the method of calculation of eigenvalues of the perturbed operator $T+P$ is considered. Resolvent of this operator is presented as convergent Neumann series on eigenfunctions of the operator $T$. The point of the method is that at first is found a set of numbers which approximate traces of the resolvent degrees of the operator $T+P$. Then by means of the given set, the system of nonlinear algebraic equations is constructed and solved. The solution of the systemis a set of numbers which approximate first eigenvalues of the resolvent of the perturbed operator $T+P$.
@article{ISU_2010_10_1_a3,
     author = {E. M. Maleko},
     title = {The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {18--23},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/}
}
TY  - JOUR
AU  - E. M. Maleko
TI  - The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 18
EP  - 23
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/
LA  - ru
ID  - ISU_2010_10_1_a3
ER  - 
%0 Journal Article
%A E. M. Maleko
%T The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 18-23
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/
%G ru
%F ISU_2010_10_1_a3
E. M. Maleko. The approached calculation of eigenvalues of the discrete operator by means of spectral traces of resolvent degrees. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a3/

[1] Dorodnitsyn A. A., Izbrannye nauchnye trudy: V 2 t., v. 1, M., 1997, 396 pp.

[2] Maleko E. M., Koroleva V. V., “O postroenii sledov “podkhodyaschikh rezolvent” stepenei vozmuschennogo operatora”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezh. vesennei mat. shkoly “Pontryaginskie chteniya – XV”, Voronezh, 2004, 141

[3] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma–Liuvillya”, Dokl. AN, 369:1 (1999), 16–18 | MR

[4] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., Popov A. Yu., “Korrektnost metoda A. A. Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differentsialnye uravneniya, 38:4 (2002), 471–476 | MR | Zbl

[5] Sadovnichii V. A., Teoriya operatorov, 2-e izd., M., 1986, 386 pp. | MR

[6] Kurosh A. G., Kurs vysshei algebry, M., 1983, 411 pp. | Zbl